Korean Journal of Chemical Engineering

, Volume 29, Issue 12, pp 1802–1805 | Cite as

Formation of nanoporous nickel oxides for supercapacitors prepared by electrodeposition with hydrogen evolution reaction and electrochemical dealloying

  • Myung-Gi Jeong
  • Kai Zhuo
  • Serhiy Cherevko
  • Chan-Hwa Chung
Materials (Organic, Inorganic, Electronic, Thin Films)


Highly nanoporous nickel oxide electrodes were obtained by electrodeposition accompanied by hydrogen evolution reaction and the selective electrochemical dealloying of copper from Ni-(Cu) porous foam. The nanoporous nickel oxide electrodes consequently have numerous dendritic morphologies composed of nanopores with 20–30 nm diameters. The specific capacitances were 428 F g−1 for as-deposited Ni-(Cu) foam electrode and 1,305 F g−1 for nanoporous nickel-oxide electrode after dealloying process, respectively. This indicates increased surface area by dealloying process leads to innovative increase of specific capacitance.

Key words

Nanoporous NiO Foam Electrode Dendritic Structure Hydrogen Evolution Reaction Electrochemical Dealloying Supercapacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Zhao, B.M. Sanchez, P. J. Dobson and P. S. Grant, Nanoscale, 3, 839 (2011).CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, Int. J. Hydrog. Energy, 34, 4889 (2009).CrossRefGoogle Scholar
  3. 3.
    T.-S. Hyun, H. L. Tuller, D.-Y. Youn, H.-G. Kim and I.-D. Kim, J. Mater. Chem., 20, 8971 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, L. Wang, A. Zhang, Y. Song, X. Li, X. Wu, P. Du and L. Yan, Korean J. Chem. Eng., 28(2), 608 (2011).CrossRefGoogle Scholar
  5. 5.
    C. Yuan, L. Hou, L. Yang, D. Li, L. Shen, F. Zhang and X. Zhang, J. Mater. Chem., 21, 16035 (2011).CrossRefGoogle Scholar
  6. 6.
    X.-H. Xia, J.-P. Tu, X.-L. Wang, C.-D. Gu and X.-B. Zhao, Chem. Comm., 47, 5786 (2011).CrossRefGoogle Scholar
  7. 7.
    V. Augustyn and B. Dunn, C. R. Chim., 13, 130 (2010).CrossRefGoogle Scholar
  8. 8.
    B. Chi, J. Li, X. Yang, Y. Gong and N. Wang, Int. J. Hydrog. Energy, 30, 29 (2005).CrossRefGoogle Scholar
  9. 9.
    C. Guan, J. Liu, C. Cheng, H. Li, X. Li, W. Zhou, H. Zhang and H. J. Fan, Energy Environ. Sci., 4, 4496 (2011).CrossRefGoogle Scholar
  10. 10.
    Y. I. Kim, J. K. Yoon, J. S. Kown and J.M. Ko, Korean Chem. Eng. Res., 48(4), 440 (2010).Google Scholar
  11. 11.
    J.M. Ko and K. M. Kim, Korean Chem. Eng. Res., 47(1), 11 (2009).Google Scholar
  12. 12.
    P. Justin, S. Kumar Meher and G. Ranga Rao, J. Phys. Chem. C, 114, 5203 (2010).CrossRefGoogle Scholar
  13. 13.
    K.-H. Chang and C.-C. Hu, Appl. Phys. Lett., 88, 193102 (2006).CrossRefGoogle Scholar
  14. 14.
    N. D. Nikolic, K. I. Popov, L. J. Pavlovic and M. G. Pavlovic, J. Eletroanal. Chem., 588, 88 (2006).CrossRefGoogle Scholar
  15. 15.
    N. D. Nikolic, G. Brankovic, M. G. Pavlovic and K. I. Popov, J. Eletroanal. Chem., 621, 13 (2008).CrossRefGoogle Scholar
  16. 16.
    S. Cherevko and C.-H. Chung, Talanta, 80, 1371 (2010).CrossRefGoogle Scholar
  17. 17.
    S. Cherevko, X. Xing and C.-H. Chung, Electrochem. Commun., 12, 467 (2010).CrossRefGoogle Scholar
  18. 18.
    S. Cherevko and C.-H. Chung, Electrochim. Acta, 55, 22, 6383 (2010).CrossRefGoogle Scholar
  19. 19.
    X. Xing, S. Cherevko and C.-H. Chung, Mater. Chem. Phys., 126, 36 (2011).CrossRefGoogle Scholar
  20. 20.
    S. Cherevko, N. Kulyk and C.-H. Chung, Nanoscale, 4,1, 103 (2012).CrossRefGoogle Scholar
  21. 21.
    S. Cherevko, N. Kulyk and C.-H. Chung, Nanoscale, 4,2, 568 (2012).CrossRefGoogle Scholar
  22. 22.
    X. Xing, S. Cherevko and C.-H. Chung, Appl. Surf. Sci., 257, 8054 (2011).CrossRefGoogle Scholar
  23. 23.
    S. Cherevko and C.-H. Chung, Electrochem. Commun., 13, 16 (2011).CrossRefGoogle Scholar
  24. 24.
    S. Cherevko, N. Kulyk and C.-H. Chung, Langmuir, 28, 3306 (2012).CrossRefGoogle Scholar
  25. 25.
    X. H. Xia, J. P. Tu, Y. Q. Zhang, Y. J. Mai, X. L. Wang, C. D. Gu and X. B. Zhao, J. Phys. Chem. C, 115(45), 22662 (2011).CrossRefGoogle Scholar
  26. 26.
    K. Fukami, S. Nakanishi, H. Yamasaki, T. Tada and K. Sonoda, J. Phys. Chem. C, 111, 1150 (2007).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  • Myung-Gi Jeong
    • 1
  • Kai Zhuo
    • 1
  • Serhiy Cherevko
    • 1
  • Chan-Hwa Chung
    • 1
  1. 1.School of Chemical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations