Advertisement

Korean Journal of Chemical Engineering

, Volume 29, Issue 10, pp 1382–1387 | Cite as

Boron removal by means of chemical precipitation with calcium hydroxide and calcium borate formation

  • Alper Erdem YilmazEmail author
  • Recep Boncukcuoğlu
  • Serkan Bayar
  • Baybars Ali Fil
  • Mehmet Muhtar Kocakerim
Environmental Engineering

Abstract

Boron removal was investigated by chemical precipitation from aqueous solutions containing boron using calcium hydroxide. pH, initial boron concentration, amount of Ca(OH)2, stirring speed and solution temperature were selected as operational parameters in a batch system. The highest boron removal efficiency was reached at pH 1.0. Increasing initial boron concentration and amount of calcium hydroxide raised to boron removal efficiency. Boron removal efficiency was highest at a stirring speed of 150 rpm. The most important parameter affecting boron removal efficiency was solution temperature. Increasing solution temperature increased importantly boron removal. XRD analysis showed that CaB3O3(OH)5·4H2O, which is a borate mineral called inyoite, occurred between Ca(OH)2 and borate ions. As a result of the obtained experimental data, when the optimum operational conditions were selected, over 96% of boron removal efficiency was reached by this method.

Key words

Boron Removal Recovery Precipitation Inyoite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Boncukcuoğlu, M. M. Kocakerim, E. Kocada istan and M. T. Yilmaz, Resour. Conserv. Recycl., 37, 147 (2003).CrossRefGoogle Scholar
  2. 2.
    N. Öztürk and D. Kavak. J. Hazard. Mater. B, 127, 81 (2005).CrossRefGoogle Scholar
  3. 3.
    H. F. Seiler, Handbook on toxicity of inorganic compounds, Marcel Decker Inc., New York (1998).Google Scholar
  4. 4.
    A. E. Yılmaz, R. Boncukcuoğlu and M. M. Kocakerim, J. Hazard. Mater., 144, 101 (2007).CrossRefGoogle Scholar
  5. 5.
    W. T. Barranco, P. F. Hudak and C. D. Eckhert, Cancer Causes Control, 18, 71 (2007).CrossRefGoogle Scholar
  6. 6.
    X. Li, R. Liu, S. Wu, J. Liu, S. Cai and D. Chen, J. Colloid Interface Sci., 361(1), 232 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Yurdako, Y. Seki, S. Karahan and K. Yurdako, J. Colloid Interface Sci., 286, 440 (2005).CrossRefGoogle Scholar
  8. 8.
    S. Karahan, M. Yurdako, Y. Seki and K. Yurdako, J. Colloid Interface Sci., 293, 36 (2006).CrossRefGoogle Scholar
  9. 9.
    D. Kavak, J. Hazard. Mater., 163, 308 (2009).CrossRefGoogle Scholar
  10. 10.
    R. Boncukcuoğlu, A. E. Yılmaz, M.M. Kocakerim and M. Copur, Desalination, 160, 159 (2004).CrossRefGoogle Scholar
  11. 11.
    A. E. Yılmaz, R. Boncukcuoglu, M. T. Yılmaz and M.M. Kocakerim, J. Hazard. Mater., 117, 221 (2005).CrossRefGoogle Scholar
  12. 12.
    C. Yan, W. Yi, P. Ma and X. Deng, J. Hazard. Mater., 154, 564 (2008).CrossRefGoogle Scholar
  13. 13.
    N. Kabay, I.Y. Ipek, I. Soroko and M. Makowski, Desalination, 241, 167 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Koseoglu, B. I. Harman, N. O. Yigit and E. Guler, Desalination, 258 (2010).Google Scholar
  15. 15.
    A. E. Yılmaz, R. Boncukcuoglu, M.M. Kocakerim and B. Keskinler, J. Hazard. Mater. B, 125, 160 (2005).CrossRefGoogle Scholar
  16. 16.
    Z. Yazicigil and Z. Oztekin, Desalination, 190, 71 (2006).CrossRefGoogle Scholar
  17. 17.
    J. Wolska and M. Bryjak, Desalination, 283, 193 (2011).CrossRefGoogle Scholar
  18. 18.
    T. Itakura, R. Sasai and H. Itoh, Water Res., 39, 2543 (2005).CrossRefGoogle Scholar
  19. 19.
    M. M. F. Garcia-Soto and E. M. Camacho, Sep. Purif. Technol., 48, 36 (2006).CrossRefGoogle Scholar
  20. 20.
    Franson, 21th Ed., M.A.H., APHA, AWWA and WPCF Press (2005).Google Scholar
  21. 21.
    J. Ghosh, S.K. Chattopadhayay, A. K. Meikap and S. K. Chatterjee, J. Alloy. Compd., 453, 131 (2008).CrossRefGoogle Scholar
  22. 22.
    J.W. Na and K. J. Lee, Ann. Nucl. Energy, 20, 455 (1993).CrossRefGoogle Scholar
  23. 23.
    D. Hou, J. Wang, X. Sun and Z. Luan, J. Hazard. Mater., 177, 613 (2010).CrossRefGoogle Scholar
  24. 24.
    A. E. Yılmaz, R. Boncukcuoğlu, M.M. Kocakerim and E. Kocadağistan, Desalination, 230, 288 (2008).CrossRefGoogle Scholar
  25. 25.
    N. Öztürk, D. Kavak and T. E. Köse, Desalination, 223, 1 (2008).CrossRefGoogle Scholar
  26. 26.
    Y. Cengeloglu, G. Arslan, A. Tor and I. Kocak, Sep. Purif. Technol., 64, 141 (2008).CrossRefGoogle Scholar
  27. 27.
    O. P. Ferreira, S.G. Moraes, N. Durán and L. Cornejo, Chemosphere, 62, 80 (2006).CrossRefGoogle Scholar
  28. 28.
    P. Remy, H. Muhr, E. Plasari and I. Ouerdiane, Environ. Progress, 24, 1 (2005).CrossRefGoogle Scholar
  29. 29.
    T. Itakura, R. Sasai and H. Itoh, Bullet. Chem. Soc. Japan, 79, 1303 (2006).CrossRefGoogle Scholar
  30. 30.
    H. C. Tsai and S. L. Lo, J. Hazard. Mater., 186, 1431 (2011).CrossRefGoogle Scholar
  31. 31.
    C. Irawan, Y. L. Kuo and J. C. Liu, Desalination, 280,1–3, 280 (2011).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  • Alper Erdem Yilmaz
    • 1
    Email author
  • Recep Boncukcuoğlu
    • 1
  • Serkan Bayar
    • 1
  • Baybars Ali Fil
    • 1
  • Mehmet Muhtar Kocakerim
    • 2
  1. 1.Department of Environmental EngineeringAtatürk UniversityErzurumTurkey
  2. 2.Department of Chemistry, Science FacultyÇankırı Karatekin UniversityÇankırıTurkey

Personalised recommendations