Korean Journal of Chemical Engineering

, Volume 29, Issue 8, pp 1102–1107 | Cite as

Synthesis of snowman-shaped microparticles by monomer swelling and polymerization of crosslinked seed particles

  • Young-Sang Cho
  • Shin-Hyun Kim
  • Jun Hyuk Moon


Nonspherical snowman-shaped micro-sized particles were synthesized via monomer swelling and the polymerization of crosslinked seed particles. Monodispersed crosslinked polystyrene microspheres and methylmethacrylate were used as seed particles and the swelling monomer, respectively. Methylmethacrylate (MMA) induced crosslinked polystyrene microparticle swelling; however, compared to polystyrene, MMA is relatively hydrophilic. As a result, phase separation was observed, resulting in monomer-swollen, cross-linked particles protruding from the surface of the seed particles. By changing the monomer-to-particle weight ratio from 4 to 8, the ratio of the size of the head to the body of the snowman-shaped particles was varied from 0.3 to 0.7. The morphologies of the snowman-shaped particles were predicted using Surface Evolver software, and the simulation was applied to show the unique self-organization morphologies of snowman-shaped particles. Open image in new window

We synthesized snowman-shaped microparticles by swelling and polymerizing cross-linked PS seed particles with methylmethacrylate. The monomer-swollen, cross-linked particles exhibited protrusions from the surface of the microparticles due to the phase separation of seeds from the particles. The size of the protrusion or head of the snowmanshaped particles was controlled by changing the monomer-to-particle weight ratio during the swelling process. Simulations were applied to estimate the aspect ratio of snowman-shaped particles and their self-assembled morphologies.

Key words

Swelling Seeded Polymerization Nonspherical Particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Caruso, Colloids and colloid assemblies, Wiely-VCH, Weinheim, Germany (2004).Google Scholar
  2. 2.
    A. D. Dinsmore, M. F. Hsu, M.G. Nikolaides, M. Marquez, A. R. Bausch and D. A. Weitz, Science, 298, 1006 (2002).CrossRefGoogle Scholar
  3. 3.
    J. H. Moon, G.-R. Yi, S.-M. Yang, D. J. Pine and S. B. Park, Adv. Mater., 16, 605 (2004).CrossRefGoogle Scholar
  4. 4.
    Y.-S. Cho, G.-R. Yi, J. H. Moon, D.-C. Kim, B.-J. Lee and S.-M. Yang, J. Colloid Interf. Sci., 341, 209 (2010).CrossRefGoogle Scholar
  5. 5.
    J. H. Moon and S. Yang, Chem. Rev., 110, 547 (2010).CrossRefGoogle Scholar
  6. 6.
    F. J. Schork, Y. Luo, W. Smulders, J. P. Russum, A. Butte and K. Fontenot, Appl. Polym. Sci., 175, 129 (2005).Google Scholar
  7. 7.
    H. Dong, S.-Y. Lee and G.-R. Yi, Macromol. Res., 17, 397 (2009).CrossRefGoogle Scholar
  8. 8.
    S. M. Klein, V. N. Manoharan, D. J. Pine and F. F. Lange, Colloid Polym. Sci., 282, 7 (2003).CrossRefGoogle Scholar
  9. 9.
    C. C. Ho, A. Keller, J. A. Odell and R. H. Ottewill, Colloid Polym. Sci., 271, 469 (1993).CrossRefGoogle Scholar
  10. 10.
    F. Fujimura, T. Tamura, T. Itoh, C. Haginoya, Y. Komori and T. Koda, Appl. Phys. Lett., 78, 1478 (2001).CrossRefGoogle Scholar
  11. 11.
    V. N. Manoharan, M. Elsesser and D. J. Pine, Science, 301, 483 (2003).CrossRefGoogle Scholar
  12. 12.
    Y.-S. Cho, G.-R. Yi, S.-H. Kim, D. J. Pine and S.-M. Yang, Chem. Mater., 17, 5006 (2005).CrossRefGoogle Scholar
  13. 13.
    C. S. Wagner, Y. Lu and A. Wittemann, Langmuir, 24, 12126 (2008).CrossRefGoogle Scholar
  14. 14.
    H. R. Sheu, M. S. El-Aasser and J.W. Vanderhoff, J. Polym. Sci., Part A: Polym. Chem., 28, 653 (1990).CrossRefGoogle Scholar
  15. 15.
    E. B. Mock, H. D. Bruyn, B. S. Hawkett, R. G. Gilbert and C. F. Zukoski, Langmuir, 22, 4037 (2006).CrossRefGoogle Scholar
  16. 16.
    W. K. Kegel, D. R. Breed, M. Elsesser and D. J. Pine, Langmuir, 22, 7135 (2006).CrossRefGoogle Scholar
  17. 17.
    H. K. Yu, Z. Mao and D. Wang, J. Am. Chem. Soc., 131, 6366 (2009).CrossRefGoogle Scholar
  18. 18.
    J.-K. Kim, R. J. Larsen and D. A. Weitz, J. Am. Chem. Soc., 128, 14374 (2006).CrossRefGoogle Scholar
  19. 19.
    J.-W. Kim, D. Lee, H. C. Shun and D. A. Weitz, Adv. Mater., 20, 3239 (2008).CrossRefGoogle Scholar
  20. 20.
    E. B. Mock and C. F. Zukoski, Langmuir, 23, 8760 (2007).CrossRefGoogle Scholar
  21. 21.
    J.-J. Kim, K. Shin and K.-D. Suh, Macromol. Res., 15, 601 (2007).CrossRefGoogle Scholar
  22. 22.
    K. A. Brakke, Exp. Math., 1, 141 (1992).CrossRefGoogle Scholar
  23. 23.
    E. Lauga and M. P. Brenner, Phys. Rev. Lett., 93, 238301 (2004).CrossRefGoogle Scholar
  24. 24.
    M. Schnall-Levin, E. Lauga and M. P. Brenner, Langmuir, 22, 4547 (2006).CrossRefGoogle Scholar
  25. 25.
    X. Hu, H. Liu, X. Ge, S. Yang and X. Ge, Chem. Lett., 38, 854 (2009).CrossRefGoogle Scholar
  26. 26.
    H.-N. Kim, J.-H. Kang, W.-M. Jin, and J. H. Moon, Hansen, C.M., Hasen Solubility Parameters, CRC Press, Second Ed., Soft Matter, 7, 2989 (2011).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  1. 1.Nano Functional Materials Research Group, Department of Powder/Ceramic MaterialsKorea Institute of Materials ScienceChangwon, GyungnamKorea
  2. 2.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  3. 3.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulKorea

Personalised recommendations