Advertisement

Korean Journal of Chemical Engineering

, Volume 29, Issue 7, pp 903–907 | Cite as

Waste coffee-grounds as potential biosorbents for removal of acid dye 44 from aqueous solution

  • Jinkyu Roh
  • Ha Nee Umh
  • Chang Mo Yoo
  • Selvaraj Rengaraj
  • Byunghwan Lee
  • Younghun KimEmail author
Environmental Engineering

Abstract

Waste coffee-grounds (CG) with micro- and macropores are a potential biosorbent for the removal of organics or heavy metal ions from aqueous solutions. In several studies, CG was used as adsorbent for removal of heavy metal ions and organics (phenolic compounds). We investigated the potential application of CG as biosorbents for the removal of acid dye (Acid Red 44). To evaluate objectively the adsorption performance of the CG, conventional adsorbent (DA, Degussa alumina) was also tested and our previous reported data for mesoporous materials compared. In adsorption kinetics, experimental data followed the pseudo-second-order kinetic model and intraparticle diffusion was rate-controlled. The maximum uptake (Qm) capacity of CG proved half of DA, but its adsorption rate was fast (less than 1 h). Namely, Qm of CG is 27.8mg/g, and smaller than that of mesoporous adsorbents. However, coffee-ground biosorbent still possesses economical advantages compared to inorganic adsorbents.

Key words

Biosorbents Coffee-ground Dye Wastewater Alumina Waste-to-wealth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bhatnagar and A.K. Minocha, Indian J. Chem. Technol., 13, 203 (2006).Google Scholar
  2. 2.
    H.D. Utomo and K.A. Hunter, J. Surf. Sic. Nanotech., 4, 504 (2006).CrossRefGoogle Scholar
  3. 3.
    M. A. Ahmad and N. K. Rahman, Chem. Eng. J., 170, 154 (2011).CrossRefGoogle Scholar
  4. 4.
    V. Boonamnuayvitaya, C. Chaiya, W. Tanthapanichakoon and S. Jarudilokkul, Sep. Purf. Technol., 35, 11 (2004).CrossRefGoogle Scholar
  5. 5.
    A. S. Franca, L. S. Oliveira and M. E. Ferreira, Desalination, 249, 267 (2009).CrossRefGoogle Scholar
  6. 6.
    B. Lee, Y. Kim, H. Lee and J. Yi, Micropor. Mesopor. Mater., 50, 77 (2001).CrossRefGoogle Scholar
  7. 7.
    Y. Kim, C. Kim, I. Choi and S. Rengaraj and J. Yi, Environ. Sci. Technol., 38, 924 (2004).CrossRefGoogle Scholar
  8. 8.
    E. Forgacs, T. Cserhati and G. Oros, Environ. Inter., 30, 953 (2004).CrossRefGoogle Scholar
  9. 9.
    R. Andreozzi, V. Caprio, A. Insola and R. Marotta, Catal. Today, 53, 51 (1999).CrossRefGoogle Scholar
  10. 10.
    Y. Kim, C. Kim and J. Yi, Mater. Res. Bull., 39, 2103 (2004).CrossRefGoogle Scholar
  11. 11.
    J.C. Park, J.B. Joo and J. Yi, Korean J. Chem. Eng., 22, 276 (2005).CrossRefGoogle Scholar
  12. 12.
    Y. S. Ho and G. McKay, Water Res., 34, 735 (2000).CrossRefGoogle Scholar
  13. 13.
    W. J. Weber and J. C. Morris, Advances in water pollution research, Pergamon Press, Oxford (1964).Google Scholar
  14. 14.
    L. S. Oliveira, A. S. Franca, T.M. Alves and S.D. F. Rocha, J. Hazard. Mater., 155, 507 (2008).CrossRefGoogle Scholar
  15. 15.
    J. D. Seader and E. J. Henley, Separation process principles, John Wiley, New York (1998).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  • Jinkyu Roh
    • 1
  • Ha Nee Umh
    • 1
  • Chang Mo Yoo
    • 1
  • Selvaraj Rengaraj
    • 2
  • Byunghwan Lee
    • 3
  • Younghun Kim
    • 1
    Email author
  1. 1.Department of Chemical EngineeringKwangwoon UniversitySeoulKorea
  2. 2.Department of ChemistrySultan Qaboos UniversityMuscatOman
  3. 3.Department of Chemical System TechnologyKeimyung UniversityDaeguKorea

Personalised recommendations