Advertisement

Korean Journal of Chemical Engineering

, Volume 29, Issue 5, pp 650–656 | Cite as

Optimization of enzymatic extraction of polysaccharides from some marine algae by response surface methodology

  • Shengnan Li
  • Dandan Han
  • Kyung Ho Row
Separation Technology, Thermodynamics

Abstract

A novel enzymatic extraction combined with response surface methodology was developed for polysaccharide extraction from marine algae. Box-Behnken design was employed to optimize concentration of enzyme, ratio of water to raw material and extraction time for high extraction yields. The optimal extraction conditions were as follows: a concentration of enzyme of 778.01 mg/g with ratio of water to raw material of 86.80 and extraction time of 129.93 min for Gelidium amansii and a concentration of enzyme of 997.03 mg/g with ratio of water to raw material of 98.76 and extraction time of 117.69 min for Laminaria japonica Aresch. Under the optimal conditions, extraction yields were 48.36% and 32.47%, respectively. Experimental data were fitted by multiple regression analysis to a secondorder polynomial equation and were statistically analyzed. The predicted model matched the experimental data well with coefficients of determination (R2) of 0.9864 and 0.9892, respectively.

Key words

Marine Algae Enzymatic Extraction Polysaccharides Response Surface Methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. El Gamal, Saudi Pharmaceut. J., 18, 1 (2010).CrossRefGoogle Scholar
  2. 2.
    T. Nagai and T. Yukimoto, Food Chem., 81, 327 (2003).CrossRefGoogle Scholar
  3. 3.
    I. Wijesekara and S. K. Kim, Marine Drugs, 8, 1080 (2010).CrossRefGoogle Scholar
  4. 4.
    A. I. Usov, G. P. Smirnova and N.G. Klochkova, Russ. J. Bioorg. Chem., 27, 395 (2001).CrossRefGoogle Scholar
  5. 5.
    Z. Zhang, F. Wang, X. Wang, X. Liu, Y. Hou and Q. Zhang, Carbohydr. Polym., 82, 118 (2010).CrossRefGoogle Scholar
  6. 6.
    T. Zhu, H. J. Heo and K. H. Row, Carbohydr. Polym., 82, 106 (2010).CrossRefGoogle Scholar
  7. 7.
    E. N. Bridgers, M. S. Chinn and V. D. Truong, Ind. Crop. Prod., 32, 613 (2010).CrossRefGoogle Scholar
  8. 8.
    C. E. Missang, P. Massiot, A. Baron and J. F. Drilleau, Carbohydr. Polym., 20, 131 (1993).CrossRefGoogle Scholar
  9. 9.
    P. Senklang and P. Anprung, J. Food Process Preserv., 34, 759 (2010).CrossRefGoogle Scholar
  10. 10.
    M.M. H. Huisman, H. A. Schols and A.G. J. Voragen, Carbohydr. Polym., 38, 299 (1999).CrossRefGoogle Scholar
  11. 11.
    C.Y. Gan, N.H. Abdul Manaf and A. A. Latiff, Carbohydr. Polym., 79, 825 (2010).CrossRefGoogle Scholar
  12. 12.
    C. Y. Gan and A. A. Latiff, Carbohydr. Polym., 83, 600 (2011).CrossRefGoogle Scholar
  13. 13.
    X. Guo, X. Zou and M. Sun, Carbohydr. Polym., 80, 344 (2010).CrossRefGoogle Scholar
  14. 14.
    R. Liang, Carbohydr. Polym., 74, 858 (2008).CrossRefGoogle Scholar
  15. 15.
    D. Qiao, B. Hu, D. Gan, Y. Sun, H. Ye and X. Zeng, Carbohydr. Polym., 76, 422 (2009).CrossRefGoogle Scholar
  16. 16.
    Y. Sun, T. Li, J. Yan and J. Liu, Carbohydr. Polym., 80, 242 (2010).CrossRefGoogle Scholar
  17. 17.
    W. Cai, X. Gu and J. Tang, Carbohydr. Polym., 71, 403 (2008).CrossRefGoogle Scholar
  18. 18.
    G. Fan, Y. Han, Z. Gu and D. Chen, LWT., 41, 155 (2008).CrossRefGoogle Scholar
  19. 19.
    C. Ji, T. Wu and C. Wang, J. Harbin Univ. Commerce (Nature Sciences), 22, 8 (2006).Google Scholar
  20. 20.
    T. Masuko, A. Minami, N. Iwasaki, T. Majima, S. I. Nishimura and Y. C. Lee, Anal. Biochem., 339, 69 (2005).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2012

Authors and Affiliations

  1. 1.Department of Chemical EngineeringInha UniversityIncheonKorea

Personalised recommendations