Korean Journal of Chemical Engineering

, Volume 29, Issue 5, pp 601–605 | Cite as

Experimental study and artificial neural network simulation of methane adsorption on activated carbon

  • Maryam Molashahi
  • Hassan HashemipourEmail author


The adsorption of methane on two activated carbons with different physical properties was measured. Adsorption isotherms were obtained by static volumetric method at different temperatures and pressures. The experimental results sow the best gas storage capacity was 113.5 V/V at temperature 280 K and pressure 8.5MPa on an activated carbon with surface area 1,060 m2/gr. An artificial neural network (ANN) based on genetic algorithm (GA) was used to predict amount of adsorption. The experimental data including input pressure, temperature and surface area of adsorbents as input parameters were used to create a GA-ANN simulation. The simulation results were compared with the experimental data and a good agreement was observed. The simulation was applied to calculate isosteric heat of adsorption by using the Clausius-Clapeyron equation. Comparison of the calculated adsorption heat showed different surface heterogeneity of the adsorbents.

Key words

Methane Activated Carbon Adsorption Artificial Neural Network Genetic Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Tagliabuea, D. Farrussengb, S. Valenciac, S. Aguadob, U. Ravonb, C. Rizzoa, A. Cormac and C. Mirodatosa, J. Chem. Eng., 155, 553 (2009).CrossRefGoogle Scholar
  2. 2.
    D. Lozano-Castelló, J. Alcañiz-Monge, M. A. de la Casa-Lillo, D. Cazorla-Amorós and A. Linares-Solano, J. Fuel, 81, 1777 (2002).CrossRefGoogle Scholar
  3. 3.
    A. Danna, S. Iyuke, A. FakhrulRazi, T. Chuah, M. A. Atieh and M. F. Aikhatib, Environ. J. Info. Sci., 1, 597 (2003).Google Scholar
  4. 4.
    J. Wegrzyn and M. Gurevih, J. Appl. Energy, 55, 71 (1996).CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, Y. Wang, H. Chen and L. Zhou, J. Carbon, 43, 2007 (2005).CrossRefGoogle Scholar
  6. 6.
    A. Linares-Solano Adsorbed natural gas storage for alternative motor fuels, Conference of the 6th framework program, Warsaw, Poland (2002).Google Scholar
  7. 7.
    L. L. Vasiliev, L. E. Kanonchik, D. A. Mishkinis and M. I. Rabetsky, Int. J. Therm. Sci., 39, 1047 (2000).CrossRefGoogle Scholar
  8. 8.
    S. Cavenati, C. A. Grande and A. E. Rodrigues, J. Chem. Eng. Data, 49, 1095 (2004).CrossRefGoogle Scholar
  9. 9.
    H. Najibi, A. Chapoy and B. Tohidi, J. Fuel, 87, 7 (2007).CrossRefGoogle Scholar
  10. 10.
    Li Zhou and Yan Sun, AIChE J., 48, 2412 (2002).CrossRefGoogle Scholar
  11. 11.
    S.H. Himeno, T. Komatsu and S. H. Fujita, J. Chem. Eng. Data, 50, 369 (2005).CrossRefGoogle Scholar
  12. 12.
    R. Ch. Bansal and M. Goyal, Activated Carbon Adsorption, CRC Press (2005).Google Scholar
  13. 13.
    M. Rasoolzadeh and Sh. Fatemi, Iran. J. Chem. Chem. Eng., 27,3, 127 (2008).Google Scholar
  14. 14.
    S. Aber, N. Daneshvar, S. M. Soroureddin, A. Chabok and K. Asadpour- Zeynali, Desalination, 211, 87 (2007).CrossRefGoogle Scholar
  15. 15.
    J. Bryjak, K. Ciesielski and I. Zbiciski, J. Biotechnol., 114, 177 (2004).CrossRefGoogle Scholar
  16. 16.
    K. Vasanth Kumar, M. Monteiro de Castro, M. Martinez-Escandell, M. Molina-Sabio and F. Rodriguez-Reinoso, Chem. Eng. J., 159, 272 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringShahid Bahonar University of KermanKermanIran
  2. 2.Mining Industries Research CenterShahid Bahonar University of KermanKermanIran

Personalised recommendations