Advertisement

Korean Journal of Chemical Engineering

, Volume 29, Issue 3, pp 288–290 | Cite as

Clean and facile synthesis of triuret from urea and dimethyl carbonate (DMC) under mild conditions

  • Jianchao Chen
  • Peihua Zhao
  • Yaqing Liu
  • Hua Liu
  • Futian Zhu
Papid Communication

Abstract

Triuret has been successfully synthesized by the reaction of urea with dimethyl carbonate (DMC) under mild conditions in the presence of potassium methoxide as a catalyst. It has been fully characterized by FT-IR, 1H-NMR, 13C-NMR, and MS. Effects of the catalyst, the molar ratio of starting materials, and the reaction time on the obtained product were examined in detail. It was found that when n (urea): n (DMC)=1.2: 1, 6 h, and 0.8% catalyst, the yield of triuret can reach 98.1%. Especially, this novel procedure is reported for the first time and has many significant advantages such as easy and clean synthesis, simple work up, and high yields.

Key words

Triuret Dimethyl Carbonate Urea Clean Synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.T. Hays and W.B. Hewson, J. Agric. Food. Chem., 21, 498 (1973).CrossRefGoogle Scholar
  2. 2.
    C. B. Christianson, M. F. Carter and L. S. Holt, Fert. Res., 17, 85 (1988).CrossRefGoogle Scholar
  3. 3.
    W. H. Smith, H.G. Underwood and J.T. Hays, J. Agric. Food Chem., 19, 816 (1971).CrossRefGoogle Scholar
  4. 4.
    S. P. Palii, C. S. Contreras, J. D. Steill, S. S. Palii, J. Oomens and J. R. Eyler, Arch. Biochem. Biophys., 498, 23 (2010).CrossRefGoogle Scholar
  5. 5.
    K. M. Robinson, J.T. Morre and J. S. Beckman, Arch. Biochem. Biophys., 423, 213 (2004).CrossRefGoogle Scholar
  6. 6.
    J. L. Griffin, Biochim. Biophys. Acta, 47, 433 (1961).CrossRefGoogle Scholar
  7. 7.
    K.M. Kim, G. N. Henderson, R. F. Frye, C. D. Galloway, N. J. Brown and M. S. Segal, J. Chromatogr. B, 877, 65 (2009).CrossRefGoogle Scholar
  8. 8.
    J. Geitha, G. Hollb, T. M. Klapötke and J. J. Weigand, Combust. Flame, 139, 358 (2004).CrossRefGoogle Scholar
  9. 9.
    H. J. Lee, S. Park, J.C. Jung and I. K. Song, Korean J. Chem. Eng., 28, 1518 (2011).CrossRefGoogle Scholar
  10. 10.
    X. C. Guo, Z. F Qin, G. F. Wang and J.G. Wang, Chin. Chem. Lett., 19, 249 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Honda, S. Kuno, N. Begum, K. Fujimoto, K. Suzuki, Y. Nakagawa and K. Tomishige, Appl. Catal. A-Gen., 384, 165 (2010).CrossRefGoogle Scholar
  12. 12.
    B. B. Fan, H.Y. Li, W. B. Fan, J. L. Zhang and R. F. Li, Appl. Catal. A-Gen., 372, 94 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Bian, M. Xiao, S. J. Wang, X. J. Wang, Y. X. Lu and Y. Z. Meng, Chem. Eng. J., 147, 287 (2009).CrossRefGoogle Scholar
  14. 14.
    F. B. Alvin, US Patent, 3,862,223 (1975).Google Scholar
  15. 15.
    P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach and J. Brauer, Thermochim. Acta, 424, 131 (2004).CrossRefGoogle Scholar
  16. 16.
    A. Lundström, B. Andersson and L. Olsson, Chem. Eng. J., 150, 544 (2009).CrossRefGoogle Scholar
  17. 17.
    D. R. Park, H. Kim, J.C. Jung, M. S. Shin, S. J. Han and I. K. Song, Korean J. Chem. Eng., 26, 990 (2009).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2011

Authors and Affiliations

  • Jianchao Chen
    • 2
  • Peihua Zhao
    • 1
  • Yaqing Liu
    • 1
  • Hua Liu
    • 2
  • Futian Zhu
    • 1
  1. 1.Research Center for Engineering Technology of Polymeric Composites of Shanxi ProvinceNorth University of ChinaTaiyuanP. R. China
  2. 2.Department of Chemistry, School of ScienceNorth University of ChinaTaiyuanP. R. China

Personalised recommendations