Korean Journal of Chemical Engineering

, Volume 29, Issue 1, pp 95–102 | Cite as

Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method

  • Malay Kumar GhoshEmail author
  • Gérrard Eddy Jai Poinern
  • Touma B. Issa
  • Pritam Singh
Separation Technology, Thermodynamics


Goethite nanoparticles synthesized using hydrazine sulfate as a modifying agent were evaluated for As(V) adsorption capacity. The nanoparticles were characterized for their morphological and structural features. The precipitated goethite particles were spherical with particle size of less than 10 nm. Batch adsorption study was carried out systematically varying parameters such as pH, contact time, initial As(V) concentration and adsorbent doses. The Langmuir isotherm represented the equilibrium data well and the estimated monolayer adsorption capacity at ambient temperature was 76 mg/g, which is significantly higher than most of the adsorbents reported in the literature. Adsorption kinetic data were better represented by the pseudo-second order kinetic model. Intra-particle diffusion played a significant role in the rate controlling process in the initial hour. Desorption study showed that the loaded adsorbent could be regenerated when treated with dilute sodium hydroxide solution of pH 13.

Key words

Arsenic Goethite Adsorption Isotherms Nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bissen and F. H. Frimemel, Acta Hydroch. Hydrob., 30(1), 9 (2003).CrossRefGoogle Scholar
  2. 2.
    WHO (World Health Organisation) Guidelines for drinking water quality (1993).Google Scholar
  3. 3.
    D. Mohan and C. U. Pittman, J. Hazard. Mater., 142, 1 (2007).CrossRefGoogle Scholar
  4. 4.
    M. E. Pena, G. P. Korfiatis, M. Patel, L. Lippincott and X. Meng, Water Res., 39, 2327 (2005).CrossRefGoogle Scholar
  5. 5.
    J.T. Mayo, C. Yavuz, S. Yean, L. Cong, H. Shipley, W. Yu, J. Falkner, A. Kan, M. Tomson and V. L. Colvin, Sci. Technol. Adv. Mat., 8, 71 (2007).CrossRefGoogle Scholar
  6. 6.
    T. Tuutijärvi, J. Lu, M. Sillanpää and G. Chen, J. Hazard. Mater., 166, 1415 (2009).CrossRefGoogle Scholar
  7. 7.
    S. R. Kanel, J.-M. Greneche and H. Choi, Environ. Sci. Technol., 40, 2045 (2006).CrossRefGoogle Scholar
  8. 8.
    G. Jegadeesan, K. Mondal and S. B. Lalvani, Environ. Progr., 24, 289 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Yean, L. Cong, C. T. Yavuz, J.T. Mayo, W.W. Yu, A. T. Kan, V. L. Calvin and M. B. Tomson, J. Mater. Res., 20(12), 3255 (2005).CrossRefGoogle Scholar
  10. 10.
    G. A. Waychunas, C. S. Kim and J. F. Banfield, J. Nanopart. Res., 7, 409 (2005).CrossRefGoogle Scholar
  11. 11.
    P. R. Grossl and D. L. Sparks, Geoderma, 67, 87 (1995).CrossRefGoogle Scholar
  12. 12.
    B. A. Manning, S. E. Fendorf and S. Goldberg, Environ. Sci. Technol., 32, 2383 (1998).CrossRefGoogle Scholar
  13. 13.
    K. A. Matis, A. I. Zouboulis, F. B. Malamas, M. D.R. Afonso and M. J. Hudson, Environ. Pollut., 97, 239 (1997).CrossRefGoogle Scholar
  14. 14.
    R. J. Bowell, Appl. Geochem., 9, 279 (1994).CrossRefGoogle Scholar
  15. 15.
    S. Fendorf, M. J. Eick, P. Grossl and D. L. Sparks, Environ. Sci. Technol., 31(2), 315 (1997).CrossRefGoogle Scholar
  16. 16.
    S. Music, A. Sanc, S. Popovic, K. Nomura and T. Sawada, Croat. Chem. Acta, 73(2), 541 (2000).Google Scholar
  17. 17.
    K. M. Parida and J. Das, J. Colloid Interface Sci., 178, 586 (1996).CrossRefGoogle Scholar
  18. 18.
    H. D. Ruan, R. I. Frost, J. T. Kloprogge and L. Duong, Spectrochim. Acta A, 58, 967 (2002).CrossRefGoogle Scholar
  19. 19.
    M. Ristic, E. De Grave, S. Music, S. Popovic and Z. Orehovec, J. Molecular Structure, 834–836, 454 (2007).CrossRefGoogle Scholar
  20. 20.
    S. S. Tripathy and A. M. Raichur, Chem. Eng. J., 138, 179 (2008).CrossRefGoogle Scholar
  21. 21.
    S. Lagergren, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1 (1898).Google Scholar
  22. 22.
    G. McKay and Y. S. Ho, Process Biochem., 34, 451 (1999).CrossRefGoogle Scholar
  23. 23.
    W. J. J. Weber and J. C. Morris, J. Sanit. Eng. Div. Am. Soc. Civil Engineers, 89, 31 (1963).Google Scholar
  24. 24.
    H. S. Altundogan, S. Altundogan, F. Tumen and M. Bildik, Waste Manage., 20, 761 (2000).CrossRefGoogle Scholar
  25. 25.
    M.A. Anderson, J. F. Ferguson and J. Gavis, J. Colloid Interface Sci., 54, 391 (1976).CrossRefGoogle Scholar
  26. 26.
    K. R. Hall, L. C. Eagleton, A. Acrivos and T. Vermeulen, Ind. Eng. Chem. Fundam., 5, 212 (1966).CrossRefGoogle Scholar
  27. 27.
    L. Sigg, Aquatic Surface Chemistry: Chemical Processes at the Particle-Water Interface. In: Stum W. (Ed.), John Wiley and Sons, New York (1987).Google Scholar
  28. 28.
    S. E. O’Reilly, D.G. Strawn and D. L. Sparks, Soil Sci. Soc. Am. J., 65, 67 (2001).CrossRefGoogle Scholar
  29. 29.
    K. Gupta, S. Saha and U. C. Ghosh, J. Nanopart. Res., 20, 1361 (2008).CrossRefGoogle Scholar
  30. 30.
    P. M. Solozhenkin, E. A. Deliyanni, V. N. Bakoyannakis, A. I. Zouboulis and K. A. Matis, J. Min. Sci., 39(3), 287 (2003).CrossRefGoogle Scholar
  31. 31.
    S.A. Wasay, M. J. Haron, A. Uchiumi and S. Tokunaga, Water Res., 30(5), 1143 (1996).CrossRefGoogle Scholar
  32. 32.
    H. Park, N.V. Myung, H. Jung and H. Choi, J. Nanopart. Res., 11, 1981 (2009).CrossRefGoogle Scholar
  33. 33.
    D. Mohapatra, D. Mishra and K. H. Park, J. Environ. Sci., 20, 683 (2008).CrossRefGoogle Scholar
  34. 34.
    P. Chutia, S. Kato, T. Kojima and S. Satokawa, J. Hazard. Mater., 162, 440 (2009).CrossRefGoogle Scholar
  35. 35.
    D. Borah, S. Satokawa, S. Kato and T. Kojima, J. Colloid Interface Sci., 319, 53 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2011

Authors and Affiliations

  • Malay Kumar Ghosh
    • 1
    Email author
  • Gérrard Eddy Jai Poinern
    • 1
  • Touma B. Issa
    • 1
  • Pritam Singh
    • 1
  1. 1.School of Chemical and Mathematical SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations