Biomimetic sequestration of carbon dioxide using an enzyme extracted from oyster shell



Carbon dioxide sequestration activity was compared and evaluated using bovine carbonic anhydrase (BCA), and a water soluble protein extract derived from hemocytes from diseased shell (HDS). Para-nitrophenyl acetate (p-NPA) was used to measure the reaction rate. The k cat /K m values obtained from the Lineweaver-Burk and Michaelis-Menten equations were 230.7M1s−1 for BCA and 194.1Ms for HDS. Without a biocatalyst, CaCO3 production took 15 seconds on average, while it took 5 seconds on average when BCA or HDS were present, indicating an approximately 3-fold enhancement of CaCO3 production rate by the biocatalysts. The biocatalytic hydration of CO2 and its precipitation as CaCO3 in the presence of biocatalysts were investigated.

Key words

Carbon Dioxide Sequestration Bovine Carbonic Anhydrase Hemocytes from Diseased Shell Biomineralization 


  1. 1.
    NASA, Global Warming. Goddard Space Flight Center, 207711, 286 (1998).Google Scholar
  2. 2.
    B. Metz, O. Davidson, H. de Coninck, M. Loos and L. Meyer, IPCC Special Report on Carbon Capture and Storage (2005).Google Scholar
  3. 3.
    V. Ramanathan, Bulletin of the American Academy of Arts and Sciences, 36 (2006).Google Scholar
  4. 4.
    OECD/ IEA, Energy Technology Perspectives (2008).Google Scholar
  5. 5.
    A. K. Saha, A. K. Biswas and S. S. Bandyopadhyayc, Sep. Purif. Technol., 15, 101 (1999).CrossRefGoogle Scholar
  6. 6.
    S. Bishnoi and G. T. Rochelle, Chem. Eng. Sci., 55, 5531 (2000).CrossRefGoogle Scholar
  7. 7.
    Z. Ruihong, G. Fen, H. Yongqi and Z. Huanqi, Micropor. Mesopor. Mater., 93, 212 (2006).CrossRefGoogle Scholar
  8. 8.
    Y.W. Park, I. H. Baek, S. D. Park, J.W. Lee and S. J. Park, Korean Chem. Eng. Res., 45, 573 (2007).Google Scholar
  9. 9.
    Y. D. Hwang, H.Y. Shin, H. H. Kwak and S.Y. Bae, Korean Chem. Eng. Res., 44, 588 (2006).Google Scholar
  10. 10.
    S. G. Bishnoi and T. Rochelle, AIChE J., 48 (2002).Google Scholar
  11. 11.
    M. Aineto, A. Acosta, J. M. Rincon and M. Romero, Fuel, 85, 2352 (2006).CrossRefGoogle Scholar
  12. 12.
    B. P. Sullivan, K. Krist and H. E. Guard, Electrical and electrocatalytic reactions of carbon dioxide, Elsevier, New York (1993).Google Scholar
  13. 13.
    C. Ho and J. M. Strurevant, J. Biol. Chem., 238, 1 (1963).Google Scholar
  14. 14.
    R. C. Khalifah, J. Biol. Chem., 246, 2561 (1971).Google Scholar
  15. 15.
    M. Parissa, A. Koorosh and M. Nader, Ind. Eng. Chem. Res., 46, 921 (2007).Google Scholar
  16. 16.
    G. M. Bond, J. Stringer, D. K. Brandvold, A. F. Simsek, M. G. Medina and G. Egeland, Energy Fuels, 15, 309 (2001).CrossRefGoogle Scholar
  17. 17.
    S.W. Lee and C. S. Choi, Cryst. Growth Des., 7, 1463 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Vinoba, D. H. Kim, K. S. Lim, S.K. Jeong, S.W. Lee and M. Alagar, Energy Fuels, 25, 438 (2011).CrossRefGoogle Scholar
  19. 19.
    M. Parissa, A. Koorosh and M. Nader. Ind. Eng. Chem. Res., 46, 921 (2007).CrossRefGoogle Scholar
  20. 20.
    A. Berman, L. Addadi and S. Weiner, Nature, 331, 546 (1988).CrossRefGoogle Scholar
  21. 21.
    B. Ray, Cell. Mol. Life Sci., 33, 1439 (1977).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2011

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea
  2. 2.Korea Institute of Energy ResearchDaejeonKorea

Personalised recommendations