Advertisement

Korean Journal of Chemical Engineering

, Volume 28, Issue 5, pp 1214–1220 | Cite as

Solar photocatalytic detoxification of cyanide by different forms of TiO2

  • Chockalingam KarunakaranEmail author
  • Paramasivan Gomathisankar
  • Govindasamy Manikandan
Article

Abstract

The photocatalytic efficiencies of TiO2 nanocrystals of different modifications (anatase, rutile, P25 Degussa, Hombikat), to oxidize cyanide ion and subsequently the cyanate also, under natural sunlight at 950±25W m−2 in alkaline solution have been compared. The oxides have been characterized by powder XRD, UV-visible diffuse reflectance and impedance spectroscopies. Under identical solar irradiance, the reaction follows Langmuir-Hinshelwood kinetics on cyanide, and depends on the apparent area of the catalyst bed and dissolved oxygen. However, the adsorption of cyanide on TiO2 in dark is too small to be measured analytically. The photocatalytic activity of TiO2 is not solely governed by the band gap or charge-transfer resistance or capacitance or phase composition but is in accordance with the specific surface area or the average crystallite size; rutile is an exception.

Key words

Photooxidation Sunlight Specific Surface Area Crystal Size Kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Marugan, R. van Grieken, A. E. Cassano and O. M. Alfano, Catal. Today, 144, 87 (2009).CrossRefGoogle Scholar
  2. 2.
    J. Marugan, R. van Grieken, A. E. Cassano and O. M. Alfano, Appl. Catal. B, 85, 48 (2008).CrossRefGoogle Scholar
  3. 3.
    C. Karunakaran, in Photo/Electrochemistry & Photobiology in the Environment, Energy and Fuel, S. Kaneco Ed., Research Signpost, Trivandrum (2006).Google Scholar
  4. 4.
    A. Bozzi, I. Guasaquillo and J. Kiwi, Appl. Catal. B, 51, 203 (2004).CrossRefGoogle Scholar
  5. 5.
    K. Chiang, R. Amal and T. Tran, J. Mol. Catal. A, 193, 285 (2003).CrossRefGoogle Scholar
  6. 6.
    M.D. Hernandez-Alonso, J. M. Coronado, A. J. Maira, J. Soria, V. Loddo and V. Augugliaro, Appl. Catal. B, 39, 257 (2002).CrossRefGoogle Scholar
  7. 7.
    V. Augugliaro, V. Loddo, G. Marci, L. Palmisano and M. J. Lopez-Munoz, J. Catal., 166, 272 (1997).CrossRefGoogle Scholar
  8. 8.
    R. Thiruvenkatachari, S. Vigneswaran and I. S. Moon, Korean J. Chem. Eng., 25, 65 (2008).CrossRefGoogle Scholar
  9. 9.
    T. L. Thompson and J. T. Yates, Jr., Chem. Rev., 106, 4428 (2006).CrossRefGoogle Scholar
  10. 10.
    R. Osgood, Chem. Rev., 106, 4379 (2006).CrossRefGoogle Scholar
  11. 11.
    J. Zhao, B. Li, K. Onda, M. Feng and H. Petek, Chem. Rev., 106, 4402 (2006).CrossRefGoogle Scholar
  12. 12.
    J. Peller, O. Wiest and P.V. Kamat, J. Phys. Chem. A, 108, 10925 (2004).CrossRefGoogle Scholar
  13. 13.
    Y. Shiraishi, N. Saito and T. Hirai, J. Am. Chem. Soc., 127, 12820 (2005).CrossRefGoogle Scholar
  14. 14.
    Y. Du and J. Rabani, J. Phys. Chem. B, 107, 11970 (2003).CrossRefGoogle Scholar
  15. 15.
    L. Sun and J. R. Bolton, J. Phys. Chem., 100, 4127 (1996).CrossRefGoogle Scholar
  16. 16.
    K. Chiang, R. Amal and T. Tran, Adv. Environ. Res., 6, 471 (2002).CrossRefGoogle Scholar
  17. 17.
    H.-J. Kim, L. Lu, J.-H. Kim, C.-H. Lee, T. Hyeon, W. Choi and H.-I. Lee, Bull. Korean Chem. Soc., 22, 1371 (2001).Google Scholar
  18. 18.
    J. Ryu and W. Choi, Environ. Sci. Technol., 42, 294 (2008).CrossRefGoogle Scholar
  19. 19.
    C. Karunakaran, P. Anilkumar, G. Manikandan and P. Gomathisankar, Sol. Energy Mater. Sol. Cells, 94, 900 (2010).CrossRefGoogle Scholar
  20. 20.
    P. Nagaraja, M. S. Hemanthakumar, H. S. Yathirajan and J. S. Prakash, Anal. Sci., 18, 1027 (2002).CrossRefGoogle Scholar
  21. 21.
    H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Pure Appl. Chem., 76, 2105 (2004).CrossRefGoogle Scholar
  22. 22.
    S. Jung and J. H. Kim, Korean J. Chem. Eng., 27, 645 (2010).Google Scholar
  23. 23.
    A. J. Bard and L. R. Faulkner, Electrochemical methods: Fundamentals and applications, 2nd Ed., Wiley (2000).Google Scholar
  24. 24.
    C. Karunakaran, S. Senthilvelan and S. Karuthapandian, J. Photochem. Photobiol. A, 172, 207 (2005).CrossRefGoogle Scholar
  25. 25.
    K. Hirano, H. Nitta and K. Sawada, Ultrason. Sonochem., 12, 271 (2005).CrossRefGoogle Scholar
  26. 26.
    E. P. Reddy, L. Davydov and P. Smirniotis, Appl. Catal. B, 42, 1 (2003).CrossRefGoogle Scholar
  27. 27.
    P. A. Christensen, T. A. Egerton, S. A. M. Kosa, J. R. Tinlin and K. Scott, J. Appl. Electrochem., 35, 683 (2005).CrossRefGoogle Scholar
  28. 28.
    T. A. McMurray, J. A. Byrne, P. S. M. Dunlop and E. T. McAdams, J. Appl. Electrochem., 35, 723 (2005).CrossRefGoogle Scholar
  29. 29.
    C. Karunakaran and P. Anilkumar, Cent. Eur. J. Chem., 7, 519 (2009).CrossRefGoogle Scholar
  30. 30.
    B. Xin, Z. Ren, H. Hu, X. Zhang, C. Dong, K. Shi, L. Jing and H. Fu, Appl. Surf. Sci., 252, 2050 (2005).CrossRefGoogle Scholar
  31. 31.
    H. J. Yun, H. Lee, N. D. Kim and J. Yi, Electrochem. Commun., 11, 363 (2009).CrossRefGoogle Scholar
  32. 32.
    A. Sclafani and J. M. Herrmann, J. Phys. Chem., 100, 13655 (1996).CrossRefGoogle Scholar
  33. 33.
    Z. Ding, G. O. Lu and P. F. Greenfield, J. Phys. Chem. B, 104, 4815 (2000).CrossRefGoogle Scholar
  34. 34.
    M. Yan, F. Chen, J. Zhang and M. Anpo, J. Phys. Chem. B, 109, 8673 (2005).CrossRefGoogle Scholar
  35. 35.
    D. C. Hurum, A.G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, J. Phys. Chem. B, 107, 4545 (2003).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2011

Authors and Affiliations

  • Chockalingam Karunakaran
    • 1
    Email author
  • Paramasivan Gomathisankar
    • 1
  • Govindasamy Manikandan
    • 1
  1. 1.Department of ChemistryAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations