Advertisement

Simulation and performance evaluation of the anoxic/anaerobic/aerobic process for biological nutrient removal

  • Zhen Zhou
  • Zhichao Wu
  • Zhiwei Wang
  • Shujuan Tang
  • Guowei Gu
  • Luochun Wang
  • Yingjun Wang
  • Zhiling Xin
Article

Abstract

As a modified configuration of the conventional anaerobic/anoxic/aerobic (AAO) process, a novel anoxic/anaerobic/aerobic (Reversed AAO, RAAO) process has been extensively applied in domestic wastewater treatment plants (WWTP). In this study, the Activated Sludge Model No. 2d (ASM2d) and a secondary clarifier model were calibrated and applied to simulate a pilot-scale RAAO test and evaluate the operational performance of the RAAO process. For calibration of the biological model ASM2d, only four kinetic parameters were adjusted to accurately simulate in-process variations of ammonium, nitrate and phosphate. Simulation results by the calibrated model demonstrated that phosphorus accumulating organisms (PAO) in the RAAO process (0.243 gP·(gCOD)−1) contains less poly-phosphate than the AAO process (0.266 gP·(gCOD)−1). With the increasing mixed liquor recirculation ratio in the RAAO process, the fraction of heterotrophic biomass and autotrophic biomass both increased, whereas the PAO decreased owing to adverse effects of electron acceptors on phosphorus release and poly-hydroxy-alkanoates synthesis.

Key words

Wastewater Treatment Biological Nutrient Removal Simulation Activated Sludge Calibration 

References

  1. 1.
    G. Tchobanoglous, F. L. Burton and H. D. Stensel, Wastewater engineering: Treatment and reuse, Metcalf & Eddy Inc., New York (2003).Google Scholar
  2. 2.
    M. Henze, W. Gujer and T. Mino, Activated sludge models ASM1, ASM2, ASM2D and ASM3, IWA Scientific and Technical Report, No. 9, London (2000).Google Scholar
  3. 3.
    K.V. Gernaey, M. C. M. van Loosdrecht, M. Henze, M. Lind and S. B. Jørgensen, Environ. Model. Softw., 19, 763 (2004).CrossRefGoogle Scholar
  4. 4.
    A. Nuhoglu, B. Keskinler and E. Yildiz, Process Biochem., 40, 2467 (2005).CrossRefGoogle Scholar
  5. 5.
    B. J. Ni and H. Q. Yu, Appl. Microbiol. Biotechnol., 77, 723 (2007).CrossRefGoogle Scholar
  6. 6.
    H. Siegrist, L. Rieger, G. Koch, M. Kühni and W. Gujer, Water Sci. Technol., 45, 61 (2002).Google Scholar
  7. 7.
    T. Y. Pai, Process Biochem., 42, 978 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Makinia, M. Swinarski and E. Dobiegala, Water Sci. Technol., 45, 209 (2002).Google Scholar
  9. 9.
    J. Makinia, K.H. Rosenwinkel and V. Spering, Water Res., 39, 1489 (2005).CrossRefGoogle Scholar
  10. 10.
    H. M. van Veldhuizen, M. C. M. van Loosdrecht and J. J. Heijnen, Water Res., 33, 3459 (1999).CrossRefGoogle Scholar
  11. 11.
    M.H. Cho, J. Lee, J. H. Kim and H. C. Lim, Korean J. Chem. Eng., 27, 925 (2010).CrossRefGoogle Scholar
  12. 12.
    S. H. Lee, J. H. Ko, J.B. Park, J. H. Im, J. R. Kim, J. J. Lee and C.W. Kim, Korean J. Chem. Eng., 23, 203 (2006).CrossRefGoogle Scholar
  13. 13.
    B. Zhang and T.Y. Gao, Chin. Water and Wastewater, 16, 11 (2000).Google Scholar
  14. 14.
    G. Fu, B. Dong, Z.Y. Zhou and T.Y. Gao, Chin. Water and Wastewater, 20, 53 (2004).Google Scholar
  15. 15.
    T. Kuba, A. Wachtmeister, M. C. M. van Loosdrecht and J. J. Heijnen, Water Sci. Technol., 30, 263 (1994).Google Scholar
  16. 16.
    T. Kuba, M. C. M. van Loosdrecht, F. A. Brandse and J. J. Heijnen, Water Res., 31, 777 (1997).CrossRefGoogle Scholar
  17. 17.
    M. Beccari, D. Dionisi, A. Giuliani, M. Majone and R. Ramadori, Water Sci. Technol., 45, 157 (2002).Google Scholar
  18. 18.
    Z. Zhou, Z. Wu, Z. Wang, S. Tang and G. Gu, J. Chem. Technol. Biotechnol., 83, 1596 (2008).CrossRefGoogle Scholar
  19. 19.
    Chinese NEPA, Water and wastewater monitoring methods, Chinese Environmental Science Publishing House, Beijing (1997).Google Scholar
  20. 20.
    P. J. Roeleveld and M. C. M. van Loosdrecht, Water Sci. Technol., 45, 77 (2002).Google Scholar
  21. 21.
    P. Ginestet, A. Maisonnier and M. Spérandio, Water Sci. Technol., 45, 89 (2002).Google Scholar
  22. 22.
    J. J.W. Hulsbeek, J. Kruit, P. J. Roeleveld and M. C. M. van Loosdrecht, Water Sci. Technol., 45, 127 (2002).Google Scholar
  23. 23.
    G. Sin, S.W. H. van Hulle, D. J. W. De Pauw, A. van Griensven and P. A. Vanrolleghem, Water Res., 39, 2459 (2005).CrossRefGoogle Scholar
  24. 24.
    S. K. Park, M.W. Lee, D. S. Lee and J. M. Park, Stud. Surf. Sci. Catal., 159, 401 (2006).CrossRefGoogle Scholar
  25. 25.
    C. D. M. Filipe, G. T. Daigger and C. P. L. Grady Jr, Water Environ. Res., 73, 213 (2001).CrossRefGoogle Scholar
  26. 26.
    T. Zhang, Y. Liu and H.H. Fang, Biotechnol. Bioeng., 92, 173 (2005).CrossRefGoogle Scholar
  27. 27.
    I. Takács, G.G. Patry and D. Nolasco, Water Res., 25, 1263 (1991).CrossRefGoogle Scholar
  28. 28.
    J. B. Copp, The COST simulation benchmark: Description and simulator manual, Office for Official Publication of the European Community, Luxembourg (2002).Google Scholar
  29. 29.
    Z. Zhou, Z. Wu, G. Gu and Z. Wang, Asia Pac. J. Chem. Eng., Article in press.Google Scholar
  30. 30.
    T. Kuba, M. C. M. van Loosdrecht and J. J. Heijnen, Water Res., 30, 1702 (1996).CrossRefGoogle Scholar
  31. 31.
    G. Insel, G. Sin, D. S. Lee, I. Nopens and P. A. Vanrolleghem, J. Chem. Technol. Biotechnol., 81, 679 (2006).CrossRefGoogle Scholar
  32. 32.
    D. Brdjanovic, M. C. M. van Loosdrecht, P. Versteeg, C. M. Hooijmans, G. J. Alaerts and J. J. Heijnen. Water Res., 34, 846 (2000).CrossRefGoogle Scholar
  33. 33.
    T. Panswad, A. Doungchai and J. Anotai, Water Res., 37, 409 (2003).CrossRefGoogle Scholar
  34. 34.
    L. Rieger, G. Koch, M. Kühni, W. Gujer and H. Siegrist, Water Res., 35, 3887 (2001).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2011

Authors and Affiliations

  • Zhen Zhou
    • 1
  • Zhichao Wu
    • 2
  • Zhiwei Wang
    • 2
  • Shujuan Tang
    • 2
  • Guowei Gu
    • 2
  • Luochun Wang
    • 1
  • Yingjun Wang
    • 1
  • Zhiling Xin
    • 1
  1. 1.School of Energy and Environmental EngineeringShanghai University of Electric PowerShanghaiChina
  2. 2.State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations