Advertisement

Korean Journal of Chemical Engineering

, Volume 28, Issue 3, pp 825–830 | Cite as

Biosorption of cadmium ions using Pleurotus ostreatus: Growth kinetics, isotherm study and biosorption mechanism

  • Chia Chay Tay
  • Hong Hooi Liew
  • Chun-Yang Yin
  • Suhaimi Abdul-Talib
  • Salmijah Surif
  • Afiza Abdullah Suhaimi
  • Soon Kong Yong
Article

Abstract

The mycelial growth kinetics, cadmium biosorption capacity and main governing biosorption mechanism of Pleurotus ostreatus (oyster mushroom) have been determined in this study. The fungus mycelium exhibits a sigmoidal (S-shaped) growth curve in which the growth rates for the lag and exponential phases are 0.1 and 0.31 g/L·day, respectively. The grown fungus is subjected to elemental, infra-red and scanning electron microscopy-energy dispersive x-ray spectroscopy analyses, while biosorption data are fitted to established adsorption isotherm models, namely, Langmuir, Freundlich and Dubinin-Radushkevich. It is strongly suggested that the main governing mechanism involved is chemisorption due to good fitting of biosorption data to Langmuir and Dubinin-Radushkevich models with possibility of involvement of both ion exchange and complexation. Data presented in the study are very useful for design of future pilot- or industrial-scale biosorption water purification systems.

Key words

Pleurotus ostreatus Biosorbent Cadmium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Romera, F. Gonzalez, A. Ballester, M. L. Blazquez and J. A. Munoz, Biores. Technol., 98, 3344 (2007).CrossRefGoogle Scholar
  2. 2.
    K. C. Bhainsa and S. F. D’souza, Biores. Technol., 99, 3829 (2007).CrossRefGoogle Scholar
  3. 3.
    Z. Xuan, Y. Tang, X. Li, Y. Liu and F. Luo, Biochem. Eng. J., 31, 160 (2006).CrossRefGoogle Scholar
  4. 4.
    D. P. Mungasavalli, T. Viraraghavan and Y. C. Jin, Colloids Surf. A, 301, 214 (2007).CrossRefGoogle Scholar
  5. 5.
    R. Kumar, N. R. Bishnoi, Garima and K. Bishnoi, Chem. Eng. J., 135, 202 (2008).CrossRefGoogle Scholar
  6. 6.
    M. J. Melgar, J. Alonso and M. A. García, Sci. Total Environ., 385, 12 (2007).CrossRefGoogle Scholar
  7. 7.
    M.G. Peter and U. Wollenberger, in: Frontiers in biosensorics, F.W. Scheller, F. Schubert and J. Fedrowitz Eds., Birkhäuser, Basel (1997).Google Scholar
  8. 8.
    X. Pan, J. Wang and D. Zhang, Proc. Biochem., 40, 2799 (2005).CrossRefGoogle Scholar
  9. 9.
    X. Pan, J. Wang and D. Zhang, Inter. J. Environ. Poll., 37, 289 (2009).CrossRefGoogle Scholar
  10. 10.
    J.-Z. Wu, P. C. K. Cheung, K.-H. Wong and N.-L. Huang, Food Chem., 81, 389 (2003).CrossRefGoogle Scholar
  11. 11.
    I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).CrossRefGoogle Scholar
  12. 12.
    H. Freundlich, Phys. Chem. Soc., 40, 1361 (1906).Google Scholar
  13. 13.
    M.D. Mashitah, Y. Yus-Azila and S. Bhatia, Biores. Technol., 99, 4742 (2008).CrossRefGoogle Scholar
  14. 14.
    G. Yan and T. Viraraghavan, Water Res., 37, 4486 (2003).CrossRefGoogle Scholar
  15. 15.
    M. M. Dubinin and L. V. Radushkevich, Proc. Acad. Sci. Phys. Chem. Sect. USSR, 55, 331 (1947).Google Scholar
  16. 16.
    H. Arslanoglu, H. S. Altundogan and F. Tumen, J. Hazard. Mater., 164, 1406 (2009).CrossRefGoogle Scholar
  17. 17.
    J. P. Hobson, J. Phys. Chem., 73, 2720 (1969).CrossRefGoogle Scholar
  18. 18.
    F. Helfferich, Ion exchange, McGraw-Hill, New York (1962).Google Scholar
  19. 19.
    G. Chen, G. Zeng, L. Tang, C. Du, X. Jiang, G. Huang, H. Liu and G. Shen, Biores. Technol., 99, 7034 (2008).CrossRefGoogle Scholar
  20. 20.
    H. Ginterova and H. Maxianova, Folia Microbiol., 20, 246 (1975).CrossRefGoogle Scholar
  21. 21.
    M. Bhanoori and G. Venkateswerlu, Biochim. Biophys. Acta, 1523, 21 (2000).Google Scholar
  22. 22.
    B.Y. M. Bueno, M. L. Torem, F. Molina and L. M. S. Mesquita, Miner. Eng., 21, 65 (2008).CrossRefGoogle Scholar
  23. 23.
    G. Olivieri, A. Marzocchella, P. Salatino, P. Giardina, G. Cennamo and G. Sannia, Biochem. Eng. J., 31, 180 (2006).CrossRefGoogle Scholar
  24. 24.
    L. Svecova, M. Spanelova, M. Kubal and E. Guibal, Sep. Purif. Technol., 52, 142 (2006).CrossRefGoogle Scholar
  25. 25.
    Salony, S. Mishra and V. S. Bisaria, Appl. Microbiol. Biotechnol., 71, 646 (2006).CrossRefGoogle Scholar
  26. 26.
    G. Bayramoglu and M.Y. Arica, Chem. Eng. J., 143, 133 (2008).CrossRefGoogle Scholar
  27. 27.
    T. Akar, Z. Kaynak, S. Ulusoy, D. Yuvaci, G. Ozsari and S. T. Akar, J. Hazard. Mater., 163, 1134 (2009).CrossRefGoogle Scholar
  28. 28.
    D. L. Pavia, G. M. Lampman and G. S. Kriz, Introduction to spectroscopy: A guide for students of organic chemistry, Saunders, New York (1996).Google Scholar
  29. 29.
    M. Fereidouni, A. Daneshi and H. Younesi, J. Hazard. Mater., 168, 1437 (2009).CrossRefGoogle Scholar
  30. 30.
    G. Li, P. Xue, C. Yan and Q. Li, Korean J. Chem. Eng., 27, 1239 (2010).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Chia Chay Tay
    • 1
    • 2
  • Hong Hooi Liew
    • 1
  • Chun-Yang Yin
    • 3
  • Suhaimi Abdul-Talib
    • 1
  • Salmijah Surif
    • 4
  • Afiza Abdullah Suhaimi
    • 1
  • Soon Kong Yong
    • 5
  1. 1.Faculty of Civil EngineeringUniversiti Teknologi MARAShah Alam, SelangorMalaysia
  2. 2.Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.School of Chemical and Mathematical SciencesMurdoch UniversityMurdochAustralia
  4. 4.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaUKM Bangi, SelangorMalaysia
  5. 5.International Education CentreUniversiti Teknologi MARAShah Alam, SelangorMalaysia

Personalised recommendations