Advertisement

Korean Journal of Chemical Engineering

, Volume 28, Issue 3, pp 793–799 | Cite as

Application of micellar enhanced ultrafiltration and activated carbon fiber hybrid processes for lead removal from an aqueous solution

  • Guntae Son
  • Seunghwan LeeEmail author
Article

Abstract

Micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes were used to investigate the removal condition of lead ions and surfactant sodium dodecyl sulfate (SDS) from an aqueous solution. Lead removal efficiency increased with the increase of initial surfactant concentration. Molar ratio of lead to SDS up to 1: 5 has shown over 90% removal efficiency of lead, and the optimum molar ratio of lead to SDS was found to be 1: 5. Lead removal efficiency increased with the increase of pH, while it was maintained below 30% without surfactant. Lead removal was mainly due to the adsorption mechanism and no secondary layer was formed to reduce the flux. Lower molecular weight cut-off (MWCO) membrane has shown higher removal efficiency than higher MWCO one. Permeate flux decreased with the increase of molar ratio of lead to SDS. Flux decline was mainly due to the accumulation of micelles on the membrane surface. The presence of copper as a co-existing heavy metal highly affected the lead removal while nickel did not. Two sets of ACF unit in series were able to remove SDS surfactant effectively from the effluents of MEUF process.

Key words

Ultrafiltration Membrane Micellar Enhanced Ultrafiltration Lead Sodium Dodecyl Sulfate Activated Carbon Fiber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. L. Lawniczak, P. Lecomte and J. J. Ehrhardt, Environ. Sci. Technol., 35, 1350 (2001).CrossRefGoogle Scholar
  2. 2.
    K. Baek and J.W. Yang., J. Hazard. Mater., B(108), 119 (2004).CrossRefGoogle Scholar
  3. 3.
    R. Bade and S. H. Lee, Environ. Eng. Res., 13(2), 98 (2008).CrossRefGoogle Scholar
  4. 4.
    R. A. Goyer and I. J. Chisolon, Academic Press, New York/London (1972).Google Scholar
  5. 5.
    S. H. Lee and J. H. Jang, Environ. Eng. Res., 18(2), 130 (2004).Google Scholar
  6. 6.
    S. N. Bhat, G. A. Smith and E. E. Tucker, Ind. Eng. Chem. Res., 26, 1271 (1987).CrossRefGoogle Scholar
  7. 7.
    L. Shu, S.H. Lee and V. Jegatheesan, Environ. Eng. Res., 17(2), 75 (2002).Google Scholar
  8. 8.
    V. Jegatheesan, S. H. Lee, C. Visvanathan, L. Shu and M. Marzella, Environ. Eng. Res., 4(4), 283 (1999).Google Scholar
  9. 9.
    S. Ahmadi, Y. C. Huang and B. J. Betchelor, Environ. Eng., 121, 645 (1995).CrossRefGoogle Scholar
  10. 10.
    S. R. Jadhav, N. Verma, A. Sharma and P. K. Bhattacharya, Sep. Purif. Technol., 24, 541 (2001).CrossRefGoogle Scholar
  11. 11.
    D. Chandan, S. D. Gupta and D. Sirshendu, Physicochemical and Engineering Aspects, 318, 125 (2007).Google Scholar
  12. 12.
    J. F. Scamehorn and J. H. Harwell, Marcel-Dekker Inc., New York (1989).Google Scholar
  13. 13.
    C. K. Liu, C.W. Li and C.Y. Lin, Chemosphere, 57, 629 (2004).CrossRefGoogle Scholar
  14. 14.
    S. D. Christian, J. F. Scamehorn and R. T. Ellington, Marcel Dekker, New York (1989).Google Scholar
  15. 15.
    S. H. Lee, S. Vigneswaran and K. H. Ahn, Environ. Eng. Res., 13(4), 353 (1997).Google Scholar
  16. 16.
    J. Bahdziewicz, M. Bodzek and E. Wasik, Desalination, 121, 139 (1999).CrossRefGoogle Scholar
  17. 17.
    M. K. Purkait, S. D. Gupta and S. De, J. Colloid Interf. Sci., 207, 259 (2004).Google Scholar
  18. 18.
    R. Bade and S. H. Lee, Korean J. Chem. Eng., 24(2), 239 (2007).CrossRefGoogle Scholar
  19. 19.
    X. Chai, G. Chen, P. L. Yue and Y. Mi, J. Member. Sci., 123, 235 (1997).CrossRefGoogle Scholar
  20. 20.
    K. Beak, B.K. Kim, H. J. Cho and J.W. Yang, J. Hazard. Mater., 99(3), 303 (2003).CrossRefGoogle Scholar
  21. 21.
    J.W. Yang, K. Beak, K. B. Kim and H. J. Cho, International Water Association, Delhi, 1155 (2003).Google Scholar
  22. 22.
    L. Gzara and M. Dhahbi, Desalination, 137, 241 (2001).CrossRefGoogle Scholar
  23. 23.
    G. Ghosh and P. K. Bhattacharya, Chem. Eng. J., 119, 45 (2006).CrossRefGoogle Scholar
  24. 24.
    C. Brasquet, E. Subrenat and P. Le cloirec, Water Sci. Technol., 39(10–11), 201 (1999).Google Scholar
  25. 25.
    R. Bade, S. H. Lee, S. S. Jo, H. S. Lee and S. E. Lee, Desalination, 229, 264 (2008).CrossRefGoogle Scholar
  26. 26.
    C. Jarusutthirak and G. Amy, Water Sci. Technol., 43(10), 225 (2001).Google Scholar
  27. 27.
    APHA, Americal Public Health Association, Washington D.C. (1998).Google Scholar
  28. 28.
    H. J. Kim, K. T. Beak, J. Lee, I. J. Iqbal and J.W. Yang, Desalination, 191, 186 (2006).CrossRefGoogle Scholar
  29. 29.
    P. Gagliardo, S. Adham and R. Trusell, Water Sci. Technol., 43, 139 (2001).Google Scholar
  30. 30.
    H. Shin and S. Kang, Water Sci. Technol., 47, 139 (2002).Google Scholar
  31. 31.
    J. S. Yang, K. Baek and J.W. Yang, Desalination, 185(1–3), 385 (2005).CrossRefGoogle Scholar
  32. 32.
    K. M. Lipe, D. A. Sabatini, M. A. Hasegawa and J. H. Harwell, Ground Water Monit. Rem., 16(1), 85 (1996).CrossRefGoogle Scholar
  33. 33.
    J. F. Scamehorn and J. H. Harwell, Marcel Dekker, New York (1998).Google Scholar
  34. 34.
    B. R. Fillipi, J. F. Scamehorn, R.W. Taylor and S.D. Christian, Sep. Sci. Technol., 32, 2401 (1997).CrossRefGoogle Scholar
  35. 35.
    UCLA, Magnetostrictive Materials Background, Active Materials Lab., Geoffrey P.McKnight (1994).Google Scholar
  36. 36.
    C. C. Tung, Y. M. Yang, C. H. Chang and J. R. Maa, Waste Manage., 22(7), 695 (2002).CrossRefGoogle Scholar
  37. 37.
    B. R. Fillipi, L.W. Brant, J. F. Scamehorn and S. D. Christian, J. Colloid Interf. Sci., 213, 68 (1999).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  1. 1.School of Civil and Environmental EngineeringKumoh National Institute of TechnologyGumiKorea

Personalised recommendations