Advertisement

Korean Journal of Chemical Engineering

, Volume 28, Issue 1, pp 143–148 | Cite as

Polarization characteristics and fuel utilization in anode-supported solid oxide fuel cell using three-dimensional simulation

  • Ji Won Hwang
  • Jeong Yong Lee
  • Dong Hyun Jo
  • Hyun Wook Jung
  • Sung Hyun Kim
Article

Abstract

A three-dimensional numerical simulation for anode-supported tubular solid oxide fuel cell (SOFC), which is characterized by good electrical conductivity, has been carried out. Performance results by simulation are in good agreement with those by experiments, reported in [7]. Effect of various process conditions such as operating temperature, inlet velocity of fuel, and flow direction of inlet gases on the cell performance and fuel utilization has been further scrutinized. Polarization curve rises with increasing temperature of preheated gases and chamber, resulting from the incremented activity of catalysts within electrode. An effective way to reduce the temperature variation in the single cell with increasing current density has been sought, considering the temperature-dependent thermal expansion of materials. It has also been found that the fuel utilization is enhanced by increasing the cell length and operating temperature and lowering the inlet velocity of fuel.

Key words

Anode-supported SOFC Fuel Utilization Polarization Curve Simulation Cell Performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. G. Vayenas and P. G. Debenedetti, Chem. Eng. Sci., 38, 1817 (1983).CrossRefGoogle Scholar
  2. 2.
    A. Hirano, M. Suzuki and M. Ippommatsu, J. Electrochem. Soc., 139, 2744 (1992).CrossRefGoogle Scholar
  3. 3.
    N. F. Bessette II, W. J. Wepfer and J. Winnick, J. Electrochem. Soc., 142, 3792 (1995).CrossRefGoogle Scholar
  4. 4.
    J. R. Ferguson, J. M. Fiard and R. Herbin, J. Power Sources, 58, 109 (1996).CrossRefGoogle Scholar
  5. 5.
    P.-W. Li and M. K. Chyu, J. Power Sources, 123, 487 (2003).CrossRefGoogle Scholar
  6. 6.
    P.-W. Li and K. Suzuki, J. Electrochem. Soc., 151, A548 (2004).CrossRefGoogle Scholar
  7. 7.
    S. B. Lee, T. H. Lim, R. H. Song, D. R. Shin and S. K. Dong, Intern. J. Hydrogen Energy, 33, 2330 (2008).CrossRefGoogle Scholar
  8. 8.
    Fuel Cell Modules Manual: ANSYS Group (http://www.fluent.com).
  9. 9.
    R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena, 2nd Ed., John Wiley & Sons, New York (2002).Google Scholar
  10. 10.
    J. P. O’Connell and J. M. Haile, Thermodynamics: Fundamentals for applications, Cambridge University Press, New York (2005).Google Scholar
  11. 11.
    A. Bettini, Introduction to elementary particle physics, Cambridge University Press, New York (2008).Google Scholar
  12. 12.
    J. Larminie and A. Dicks, Fuel cell systems explained, 2nd Ed., John Wiley & Sons, Chichester (2003).Google Scholar
  13. 13.
    M. Ni, M. K. H. Leung and D.Y. C. Leung, Energy Convers. Manage., 48, 1525 (2007).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Ji Won Hwang
    • 1
  • Jeong Yong Lee
    • 1
  • Dong Hyun Jo
    • 1
  • Hyun Wook Jung
    • 1
  • Sung Hyun Kim
    • 1
  1. 1.Department of Chemical and Biological EngineeringKorea UniversitySeoulKorea

Personalised recommendations