Advertisement

Korean Journal of Chemical Engineering

, Volume 27, Issue 6, pp 1773–1779 | Cite as

Simulation of methanol-to-olefin reaction over SAPO-34 catalysts with different particle sizes: Formation of active sites and deactivation

  • Hag Geum Kim
  • Kwang Young Lee
  • Hoi-Gu Jang
  • Yo Soon Song
  • Gon SeoEmail author
Article

Abstract

Conversion profiles of methanol-to-olefin (MTO) reaction over SAPO-34 catalysts with different particle sizes were simulated using two kinetic models. The MTO reaction was assumed to consist of three steps: the formation of hexamethylbenzene (HMB), the production of lower olefins over HMB and the further condensation of HMB to polyaromatic hydrocarbons. To reflect the effect of particle size on the MTO reaction, only the space near the external particle surface was considered to be available for HMB formation in Model I, whereas an effectiveness factor and a deactivation function were introduced in Model II. The simulated conversion profiles of the MTO reaction by both models successfully confirmed the presence of an induction period and deactivation, but Model II showed a better agreement between the experimental and simulated results because of its inclusion of the deactivation function and its consideration for the gradient of methanol concentration.

Key words

MTO Reaction SAPO-34 Particle Size Induction Period Deactivation Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. D. Chang, Catal. Rev. Sci. Eng., 25, 1 (1983).CrossRefGoogle Scholar
  2. 2.
    M. Stocker, Micropor. Mesopor. Mater., 29, 3 (1999).CrossRefGoogle Scholar
  3. 3.
    F. J. Keil, Micropor. Mesopor. Mater., 29, 49 (1999).CrossRefGoogle Scholar
  4. 4.
    J. Q. Chen, A. Bozzano, B. Glover, T. Fuglerud and S. Kvisle, Catal. Today, 106, 103 (2005).CrossRefGoogle Scholar
  5. 5.
    J. F. Haw, W. Song, D. M. Marcus and J. B. Nicholas, ACC. Chem. Res., 36, 317 (2003).CrossRefGoogle Scholar
  6. 6.
    J. F. Haw and D. M. Marcus, Top. Catal., 34, 317 (2005).CrossRefGoogle Scholar
  7. 7.
    M. Hunger, M. Seiler and A. Buchholz, Catal. Lett., 74, 61 (2001).CrossRefGoogle Scholar
  8. 8.
    Y. Jiang, J. Huang, V. R. R. Marthala, Y. S. Ooi, J. Weitkamp and M. Hunger, Micropor. Mesopor. Mater., 105, 132 (2007).CrossRefGoogle Scholar
  9. 9.
    G. Seo and B. G. Min, Korean Chem. Eng. Res., 44, 329 (2006).Google Scholar
  10. 10.
    A. G. Gayubo, A. T. Aguayo, A. E. Sánchez del Campo, A. M. Tarrío and J. Bilbao, Ind. Eng. Chem. Res., 39, 292 (2000).CrossRefGoogle Scholar
  11. 11.
    D. Chen, H. P. Rebo, A. Grønvold, K. Moljord and A. Holmen, Micropor. Mesopor. Mater., 35-36, 121 (2000).CrossRefGoogle Scholar
  12. 12.
    S. Soundararajan, A. K. Dalai and F. Berruti, Fuel, 80, 1187 (2001).CrossRefGoogle Scholar
  13. 13.
    T. Y. Park and G. F. Froment, Ind. Eng. Chem. Res., 40, 4172 (2001).CrossRefGoogle Scholar
  14. 14.
    T. Y. Park and G. F. Froment, Ind. Eng. Chem. Res., 40, 4187 (2001).CrossRefGoogle Scholar
  15. 15.
    A. G. Gayubo, R. Vivanco, A. Alonso, B. Valle and A. T. Aguayo, Ind. Eng. Chem. Res., 44, 6605 (2005).CrossRefGoogle Scholar
  16. 16.
    A. T. Aguayo, A. G. Gayubo, R. Vivanco, A. Alonso and J. Bilbao, Ind. Eng. Chem. Res., 44, 7279 (2005).CrossRefGoogle Scholar
  17. 17.
    A. G. Gayubo, A. T. Aguayo, A. Alonso and J. Bilbao, Ind. Eng. Chem. Res., 46, 1981 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Kaarsholm, B. Rafii, F. Joensen, R. Cenni, J. Chaouki and G. S. Patience, Ind. Eng. Chem. Res., 49, 29 (2010).CrossRefGoogle Scholar
  19. 19.
    Y. H. Song, H. J. Chae, K. E. Jeong, C. U. Kim, C. H. Shin and S. Y. Jeong, J. Korean Ind. Eng. Chem., 19, 559 (2008).Google Scholar
  20. 20.
    K. Y. Lee, H. J. Chae, S. Y. Jeong and G. Seo, Appl. Catal. A: Gen., 369, 60 (2009).CrossRefGoogle Scholar
  21. 21.
    D. Chen, K. Moljord, T. Fuglerud and A. Holmen, Micropor. Mesopor. Mater., 29, 191 (1999).CrossRefGoogle Scholar
  22. 22.
    N. Nishiyama, M. Kawaguchi, Y. Hirota, D. V. Vu, Y. Egashira and K. Ueyama, Appl. Catal. A: Gen., 362, 193 (2009).CrossRefGoogle Scholar
  23. 23.
    J. W. Park, J. Y. Lee, K. S. Kim, S. B. Hong and G. Seo, Appl. Catal. A: Gen., 339, 36 (2008).CrossRefGoogle Scholar
  24. 24.
    H. S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall International Series, New Jersey, USA (2006).Google Scholar
  25. 25.
    D. Mores, E. Stavitski, M. H. F. Kox, J. Kornatowski, U. Olsbye and B. M. Weckhuysen, Chem. Eur. J., 14, 11320 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Hag Geum Kim
    • 1
  • Kwang Young Lee
    • 2
  • Hoi-Gu Jang
    • 2
  • Yo Soon Song
    • 2
  • Gon Seo
    • 2
    Email author
  1. 1.Department of Environmental and Chemical EngineeringSeonam UniversityNamwon, JeonbukKorea
  2. 2.School of Applied Chemical Engineering and the Research Institute for CatalysisChonnam National UniversityGwangjuKorea

Personalised recommendations