Advertisement

Korean Journal of Chemical Engineering

, Volume 28, Issue 2, pp 531–538 | Cite as

Statistical optimization of process conditions for photocatalytic degradation of phenol with immobilization of nano TiO2 on perlite granules

  • Narges Keshavarz Jafarzadeh
  • Shahram Sharifnia
  • Seyed Nezam Hosseini
  • Farshad Rahimpour
Article

Abstract

Response surface methodology (RSM) using D-optimal design was applied to optimization of photocatalytic degradation of phenol by new composite nano-catalyst (TiO2/Perlite). Effects of seven factors (initial pH, initial phenol concentration, reaction temperature, UV irradiation time, UV light intensity, catalyst calcination temperature, and dosage of TiO2/perlite) on phenol conversion efficiency were studied and optimized by using the statistical software MODDE 8.02. On statistical analysis of the results from the experimental studies, the optimum process conditions were as follows: initial pH, 10.7; initial phenol concentration, 0.5 mM; reaction temperature, 27 °C; UV irradiation time, 6.5 h; UV light intensity, 250 W; catalyst calcination temperature, 600 °C; and TiO2/perlite dosage, 6 g/L. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 91.8%.

Key words

Photocatalyst Phenol TiO2 Perlite Experimental Design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Vione, C. Minero, V. Maurino, M. E. Carlotti, T. Picatonotto and E. Pelizzetti, Appl. Catal. B, 58, 79 (2005).CrossRefGoogle Scholar
  2. 2.
    A. M. Peiró, J. A. Ayllón, J. Peral and X. Doménech, Appl. Catal. B, 30, 359 (2001).CrossRefGoogle Scholar
  3. 3.
    C. Wu, X. Liu, D. Wei, J. Fan and L. Wang, Water Res., 35, 3927 (2001).CrossRefGoogle Scholar
  4. 4.
    Z. Ding, X. Hu, G. Q. Lu, P.-L. Yue and P. F. Greenfield, Langmuir, 16, 6216 (2000).CrossRefGoogle Scholar
  5. 5.
    B. Eggins, J. A. Byrne, P. M. Dunlop and A. Davidson, Top. Issue Glass, 3, 57 (1999).Google Scholar
  6. 6.
    M. S. Vohra and K. Tanaka, Environ. Sci. Technol., 35, 411 (2001).CrossRefGoogle Scholar
  7. 7.
    E. Vigil, I. Zumeta, R. Espinosa, C. Nunez, J. A. Ayllon, L. Saadoun, X. Domenech and R. Rodriguez-Clemente, Surf. Sci. Its Appl., Proc. Lat. Am. Congr., 9th, Eds. Osvaldo De Melo, and Isaac Hernandez-Calderon, 146–155, Singapore, Singapore: World Scientific Publishing Co. Pte. Ltd. (2000).Google Scholar
  8. 8.
    M.A. Barakat, J. M. Tseng and C. P. Huang, Appl. Catal. B, 59, 99 (2005).CrossRefGoogle Scholar
  9. 9.
    H. Koike, Y. Oki and Y. Takeuchi, Mater. Res. Soc. Symp. Proc., 549, 141 (1999).Google Scholar
  10. 10.
    S. N. Hosseini, S. M. Borghei, M. Vossoughi and N. Taghavinia, Appl. Catal. B, 74, 53 (2007).CrossRefGoogle Scholar
  11. 11.
    E. Martendal, D. Budziak and E. Carasek, J. Chromatogr. A, 1148, 131 (2007).CrossRefGoogle Scholar
  12. 12.
    S.V. Mohan, K. Sirisha, R. S. Rao and P.N. Sarma, Ecotoxicol. Environ. Saf., 68, 252 (2007).CrossRefGoogle Scholar
  13. 13.
    R. H. Myers and D. C. Montgomery, Response surface methodology: Process and product optimization using designed experiments, John Wiley & Sons, New York (2002).Google Scholar
  14. 14.
    D. Chen and A. K. Ray, Appl. Catal. B, 23, 143 (1999).CrossRefGoogle Scholar
  15. 15.
    M.V. Walter, M. Ruger, C. Ragob, G. C. M. Steffens, D. A. Hollander, O. Paar, H. R. Maier, W. Jahnen-Dechent, A. K. Bosserhoff and H. J. Erli, Biomaterials, 26, 2813 (2005).CrossRefGoogle Scholar
  16. 16.
    T. K. Erdem, C. Meral, M. Tokyay and T.Y. Erdogan, Cem. Concr. Compos., 29, 13 (2007).CrossRefGoogle Scholar
  17. 17.
    N. Daneshvar, M. A. Behnajady and Y. Zorriyeh Asghar, J. Hazard. Mater. B, 139, 275 (2007).CrossRefGoogle Scholar
  18. 18.
    S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Sol. Energy Mater. Sol. Cells, 77, 65 (2003).CrossRefGoogle Scholar
  19. 19.
    C. Lizama, J. Freer, J. Baeza and H. D. Mansilla, Catal. Today, 76, 235 (2002).CrossRefGoogle Scholar
  20. 20.
    M. R. Hoffmann, S. T. Martin, W. Choi and D. Bahnemann, Chem. Rev., 95, 69 (1995).CrossRefGoogle Scholar
  21. 21.
    N. Sobana and M. Swaminathan, Sep. Purif. Technol., 56, 101 (2007).CrossRefGoogle Scholar
  22. 22.
    S. Chatterjee, S. Sarkar and S. N. Bhattacharyya, J. Photochem. Photobiol. A, 77, 183 (1993).CrossRefGoogle Scholar
  23. 23.
    J. C. Lee, M. S. Kim, C. K. Kim, C. H. Chung, S.M. Cho, G.Y. Han, K. J. Yoon and B.W. Kim, Korean J. Chem. Eng., 20, 862 (2003).CrossRefGoogle Scholar
  24. 24.
    T. Ohno, K. Tokieda, S. Higashida and M. Matsumura, Appl. Catal. A, 244, 383 (2003).CrossRefGoogle Scholar
  25. 25.
    Y. Tanaka and M. Suganuma, J. Sol-Gel Sci. Technol., 22, 83 (2001).CrossRefGoogle Scholar
  26. 26.
    D. J. Kim, S. H. Hahn, S. H. Oh and E. J. Kim, Mater. Lett., 57, 355 (2002).CrossRefGoogle Scholar
  27. 27.
    A. Mills and S. Morris, J. Photochem. Photobiol. A, 71, 285 (1993).CrossRefGoogle Scholar
  28. 28.
    N. R. C. F. Machado and V. S. Santana, Catal. Today, 107, 595 (2005).CrossRefGoogle Scholar
  29. 29.
    C. M. Wang, A. Heller and H. Gerscher, J. Am. Chem. Soc., 114, 5230 (1992).CrossRefGoogle Scholar
  30. 30.
    R. M. Alberici and W. F. Jardim, Water Res., 28, 1845 (1994).CrossRefGoogle Scholar
  31. 31.
    A. Sclafani, L. Palmisano and E. Davi, New. J. Chem., 14, 265 (1990).Google Scholar
  32. 32.
    R.W. Matthews, J. Chem. Soc. Faraday Trans., 80(1), 457 (1984).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Narges Keshavarz Jafarzadeh
    • 1
  • Shahram Sharifnia
    • 1
  • Seyed Nezam Hosseini
    • 2
  • Farshad Rahimpour
    • 3
  1. 1.Chemical Engineering Department, Catalyst Research CenterRazi UniversityKermanshahIran
  2. 2.Pasteur Institute of Iran (IPI)TehranIran
  3. 3.Chemical Engiveering Department, Biotechnol. Research Lab.Razi UniversityKermanshahIran

Personalised recommendations