Advertisement

Korean Journal of Chemical Engineering

, Volume 28, Issue 1, pp 279–286 | Cite as

Development of a fast-response, high-resolution electrical mobility spectrometer

  • Panich IntraEmail author
  • Nakorn Tippayawong
Article

Abstract

A short electrical mobility spectrometer (EMS) for measuring aerosol size distribution has been developed and presented [Intra and Tippayawong, Korean J. Chem. Eng., 26, 1770, 2009]. In this work, further improvement of the short EMS into a fast-response, and high resolution instrument is presented. This was done by (i) improvement in particle charging, (ii) utilization of faster flow rate, and (iii) adoption of higher number of electrode rings. The so-called “long” EMS consists of three main parts: a particle charger, a long multi-channel size classifier column, and a multichannel electrometer. Performance of the long EMS was preliminarily tested using polydisperse, carbonaceous aerosol particles generated by a diffusion flame. Preliminary test results showed that the long EMS performed comparatively well, and gave faster response and higher resolution than the short EMS. It was a valuable aerosol instrument available for measuring size distribution of aerosol particles.

Key words

Aerosol Particle Electrical Mobility Spectrometer Electrometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Flagan, Aerosol Sci. Technol., 28, 301 (1998).CrossRefGoogle Scholar
  2. 2.
    B. Y. H. Liu and D. Y. H. Pui, J. Aerosol Sci., 6, 249 (1975).CrossRefGoogle Scholar
  3. 3.
    E. O. Knutson and K. T. Whitby, J. Aerosol Sci., 6, 443 (1975).CrossRefGoogle Scholar
  4. 4.
    P. Intra and N. Tippayawong, Mj. Int. J. Sci. Technol., 1, 120 (2007).Google Scholar
  5. 5.
    P. Intra and N. Tippayawong, Songklanakarin J. Sci. Technol., 30, 243 (2008).Google Scholar
  6. 6.
    TSI Incorporated, Operation and service manual for scanning electrical mobility sizer model 3936, Minnesota, USA (2006).Google Scholar
  7. 7.
    H. Tammet, A. Mirme and E. Tamm, Atmos. Res., 62, 315 (2002).CrossRefGoogle Scholar
  8. 8.
    TSI Incorporated, Operation and service manual for engine exhaust particle sizer model 3090, Minnesota, USA (2004).Google Scholar
  9. 9.
    G. Biskos, K. Reavell and N. Collings, Aerosol Sci. Technol., 39, 527 (2005).CrossRefGoogle Scholar
  10. 10.
    P. Intra and N. Tippayawong, Korean J. Chem. Eng., 26, 1770 (2009).CrossRefGoogle Scholar
  11. 11.
    B.R. Graskow, Design and development of a fast aerosol size spectrometer, Ph.D. Thesis, University of Cambridge, UK (2001).Google Scholar
  12. 12.
    P. Intra and N. Tippayawong, J. Electrostat., 67, 605 (2009).CrossRefGoogle Scholar
  13. 13.
    P. Intra, CMU. J. Nat. Sci., 7, 257 (2008).Google Scholar
  14. 14.
    P. Intra and N. Tippayawong, Chiang Mai J. Sci., 36, 110 (2009).Google Scholar
  15. 15.
    P. Intra and N. Tippayawong, Int. J. Appl. Electrom. Mech., Submitted.Google Scholar
  16. 16.
    P. Intra and N. Tippayawong, Korean J. Chem. Eng., 26, 269 (2009).CrossRefGoogle Scholar
  17. 17.
    P. Intra, P. B. Lasman and N. Tippayawong, Int. J. Eng. Appl. Sci., 2, 16 (2010).Google Scholar
  18. 18.
    P. Intra and N. Tippayawong, J. Aerosol Res., 21, 329 (2006).Google Scholar
  19. 19.
    A. Yawootti, P. Intra and N. Tippayawong, 32 nd Electrical Engineering Conference, Prachinburi, Thailand, 28–30 October (2009).Google Scholar
  20. 20.
    National Semiconductor Corporation, LMC662 Data Sheet (2003).Google Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  1. 1.College of Integrated Science and TechnologyRajamangala University of Technology LannaChiang MaiThailand
  2. 2.Department of Mechanical EngineeringChiang Mai UniversityChiang MaiThailand

Personalised recommendations