Korean Journal of Chemical Engineering

, Volume 27, Issue 6, pp 1864–1867

Hybrid neural network for prediction of CO2 solubility in monoethanolamine and diethanolamine solutions

  • Mohd Azlan Hussain
  • Mohamed Kheireddine Aroua
  • Chun-Yang Yin
  • Ramzalina Abd Rahman
  • Noor Asriah Ramli


The solubility of CO2 in single monoethanolamine (MEA) and diethanolamine (DEA) solutions was predicted by a model developed based on the Kent-Eisenberg model in combination with a neural network. The combination forms a hybrid neural network (HNN) model. Activation functions used in this work were purelin, logsig and tansig. After training, testing and validation utilizing different numbers of hidden nodes, it was found that a neural network with a 3-15-1 configuration provided the best model to predict the deviation value of the loading input. The accuracy of data predicted by the HNN model was determined over a wide range of temperatures (0 to 120 °C), equilibrium CO2 partial pressures (0.01 to 6,895 kPa) and solution concentrations (0.5 to 5.0M). The HNN model could be used to accurately predict CO2 solubility in alkanolamine solutions since the predicted CO2 loading values from the model were in good agreement with experimental data.

Key words

Diethanolamine Monoethanolamine CO2 Solubility Kent-Eisenberg Model Hybrid Neural Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Kohl and R. B. Nielsen, Gas purification, 5th Ed., Gulf Publishing, Houston, Texas (1997).Google Scholar
  2. 2.
    A. Benamor and M. K. Aroua, Korean J. Chem. Eng., 24, 16 (2007).CrossRefGoogle Scholar
  3. 3.
    A. Benamor and M. K. Aroua, Fluid Phase Equilibria, 231, 150 (2005).CrossRefGoogle Scholar
  4. 4.
    C. C. Chen, H. I. Britt, J. F. Boston and L. B. Evans, AIChE J., 28, 588 (1982).CrossRefGoogle Scholar
  5. 5.
    R. D. Deshmukh and A. E. Mather, Chem. Eng. Sci., 36, 355 (1981).CrossRefGoogle Scholar
  6. 6.
    R. L. Kent and B. Eisenberg, Hydrocarbon Process., 55, 87 (1976).Google Scholar
  7. 7.
    M. A. Hussain, M. S. Rahman and C. W. Ng, J. Food Eng., 51, 239 (2002).CrossRefGoogle Scholar
  8. 8.
    P. V. Danckwerts and K. M. McNeil, Trans. Inst. Chem. Eng., 45, 32 (1967).Google Scholar
  9. 9.
    J. I. Lee, F. D. Otto and A. E. Mather, J. Chem. Eng. Data, 17, 465 (1972).CrossRefGoogle Scholar
  10. 10.
    J. Y. Park, S. J. Yoon, H. Lee, J. H. Yoon, J. G. Shim, J. K. Lee, B. Y. Min, H. M. Eum and M. C. Kang, Fluid Phase Equilibria, 202, 359 (2002).CrossRefGoogle Scholar
  11. 11.
    N. Daneshvar, M. T. Zaafarani-Moattar, M. Abedinzadegan-Abdi and S. Aber, Sep. Purif. Technol., 37, 135 (2004).CrossRefGoogle Scholar
  12. 12.
    D. M. Austgen, G. T. Rochelle and C. C. Chen, Ind. Eng. Chem. Res., 30, 543 (1991).CrossRefGoogle Scholar
  13. 13.
    K. P. Shen and M. H. Li, J. Chem. Eng. Data, 37, 96 (1992).CrossRefGoogle Scholar
  14. 14.
    F. Y. Jou, A. E. Mather and F. D. Otto, Can. J. Chem. Eng., 73, 140 (1995).CrossRefGoogle Scholar
  15. 15.
    S. H. Park, K. B. Lee, J. C. Hyun and S. H. Kim, Ind. Eng. Chem. Res., 41, 1658 (2002).CrossRefGoogle Scholar
  16. 16.
    D. D. Perrin, Dissociation constants of organic bases in aqueous solution, Butterworths, London (1965).Google Scholar
  17. 17.
    T. J. Edwards, G. Maurer, J. Newman and J. M. Prausnitz, AIChE J., 24, 966 (1978).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Mohd Azlan Hussain
    • 1
  • Mohamed Kheireddine Aroua
    • 1
  • Chun-Yang Yin
    • 2
  • Ramzalina Abd Rahman
    • 1
  • Noor Asriah Ramli
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Faculty of Chemical EngineeringUniversiti Teknologi MARAShah Alam, SelangorMalaysia

Personalised recommendations