Korean Journal of Chemical Engineering

, Volume 27, Issue 4, pp 1226–1232 | Cite as

Mixing parameters for an airlift bioreactor considering constant cross sectional area of riser to downcomer: Effect of sparging gas location

  • Jamshid BehinEmail author
  • Azade Ahmadi


The effect of mode of sparging gas on the mixing parameters of an internal loop airlift bioreactor was investigated. Two bioreactors of identical volume of 14×103 cm3 and the optimum riser to downcomer cross sectional area ratio of 0.6 were studied. In one bioreactor a gas sparger was located in the draft tube and in the annulus in another. Liquid mixing characteristics, i.e., mixing time and circulation time, were employed to describe the performance of the bioreactors. The tracer injection method was used to determine the mixing parameters. A mathematical modeling based on the tanks-in-series model was employed to characterize the hydrodynamics behavior of the bioreactors. Matlab 7.1 software was used to solve the model equations in the Laplace domain and determine the model parameter, the number of stages. A comparison between the simulation results and experimental data showed that the applied model can accurately describe the behavior of the bioreactors. The results showed that when the gas sparger was located in the draft tube, the liquid mixing time, circulation time, and the number of stage were less than while the gas sparger was located in annulus. This is due to more wall effects, more energy losses and pressure drop in the case of gas injection in the annulus.

Key words

Airlift Bioreactor Circulation Time Gas Sparger Liquid Mixing Time Mathematical Modeling Tank-in-series Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Jajuee, A. Margaritis, D. Karamanev and M. A. Bergougnou, Chem. Eng. J., 125, 119 (2006).CrossRefGoogle Scholar
  2. 2.
    P. Wang, M. Huang, T.K. Cheng, H. P. Chien and W.T. Wu, J. Chem. Eng. Japan, 35, 354 (2002).CrossRefGoogle Scholar
  3. 3.
    P. Zhang, M. Yang and X. Lu, Chin. J. Chem. Eng., 15, 196 (2007).CrossRefGoogle Scholar
  4. 4.
    H. J. Song, H. Li, J. H. Seo, M. J. Kim and S. J. Kim, Korean J. Chem. Eng., 26, 141 (2009).CrossRefGoogle Scholar
  5. 5.
    K. B. Lee, B. H. Chun, J.C. Lee, C. J. Park and S.H. Kim, Korean J. Chem. Eng., 19, 87 (2002).CrossRefGoogle Scholar
  6. 6.
    D. J. Kim, D. H. Ahn and D. I. Lee, Korean J. Chem. Eng., 22, 85 (2005).CrossRefGoogle Scholar
  7. 7.
    K. Muthukumar and M. Velan, J. Chem. Eng. Japan, 38, 253 (2005).CrossRefGoogle Scholar
  8. 8.
    T. J. Lin and P. Ch. Chen, J. Chem. Eng., 40, 69 (2005).CrossRefGoogle Scholar
  9. 9.
    C. J. Park, Korean J. Chem. Eng., 16, 694 (1999).CrossRefGoogle Scholar
  10. 10.
    T. Zhang, J. Wang, Z. Luo and Y. Jin, J. Chem. Eng., 109, 115 (2005).CrossRefGoogle Scholar
  11. 11.
    C. Freitas and J. A. Teixeira, Bioprocess. Eng., 18, 267 (1998).CrossRefGoogle Scholar
  12. 12.
    A. Fadavi and Y. Chisti, Chem. Eng. J., 131, 105 (2007).CrossRefGoogle Scholar
  13. 13.
    Y. Bando, H. Hayakawa and M. Nishimura, J. Chem. Eng. Japan, 31, 765 (1998).CrossRefGoogle Scholar
  14. 14.
    D. J. Pollard, P. Ayazi Shamlou, M. D. Lilly and M. P. Ison, Bioproc. Biosystems Eng. J., 15, 279 (1996).Google Scholar
  15. 15.
    K. Koide, K. Horib, H. Kitaguchi and N. Suzuki, J. Chem. Eng. Japan, 17, 547 (1984).CrossRefGoogle Scholar
  16. 16.
    P. Weiland, Ger. Chem. Eng., 7, 374 (1984).Google Scholar
  17. 17.
    M. Gavrilescu and R. Z. Tudose, Chem. Eng. Proc., 38, 225 (1999).CrossRefGoogle Scholar
  18. 18.
    O. Levenspiel, Chem. React. Eng., 3rd Ed., John Wiley & Sons, New York, 295 (1999).Google Scholar
  19. 19.
    H. Znad, V. Báleš, J. Markoš and Y. Kawase, Biochem. Eng. J., 21, 73 (2004).CrossRefGoogle Scholar
  20. 20.
    A. Prokop, L. E. Erickson, J. Fernandez and A. E. Humphrey, Biotechnol. Bioeng., 11, 945 (1969).CrossRefGoogle Scholar
  21. 21.
    L. E. Erickson, S. S. Lee and L. T. Fan, J. Appl. Chem. Biotechnol., 22, 199 (1972).CrossRefGoogle Scholar
  22. 22.
    J. R. Turner and P. L. Mills, Chem. Eng. Sci., 45, 2317 (1990).CrossRefGoogle Scholar
  23. 23.
    T. Kanai, T. Uzumaki and Y. Kawase, Comput. Chem. Eng., 20, 1089 (1996).CrossRefGoogle Scholar
  24. 24.
    K. H. Choi, Korean J. Chem. Eng., 16, 441 (1999).CrossRefGoogle Scholar
  25. 25.
    M. Varedi Kolaei, R. Karimzadeh, S.A. Shojaosadati and J. Towfighi, Iranian. J. Biotechnol., 5, 87 (2007).Google Scholar
  26. 26.
    I. Sikula, M. Jurašèík and J. Markoš, Chem. Eng. Sci., 62, 5216 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Blažej, M. Kiša and J. Markos, Chem. Eng. Proc., 43, 1519 (2004).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringRazi UniversityKermanshahIran

Personalised recommendations