Korean Journal of Chemical Engineering

, Volume 27, Issue 4, pp 1117–1122 | Cite as

Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions

  • Hyun-Jo Hong
  • Sung-Won Ham
  • Moon Hyeon Kim
  • Seung-Min Lee
  • Jung-Bin Lee
Catalysis, Reaction Engineering


The performance of V2O5/TiO2-based commercial SCR catalyst for the oxidation of gaseous elemental mercury (Hg0) with respect to reaction conditions was examined to understand the mechanism of Hg0 oxidation on SCR catalyst. It was observed that a much larger amount of Hg0 adsorbed on the catalyst surface under oxidation condition than under SCR condition. The activity of commercial SCR catalyst for Hg0 oxidation was negligible in the absence of HCl, regardless of reaction conditions. The presence of HCl in the reactant gases greatly increased the activity of SCR catalyst for the oxidation of Hg0 to oxidized mercury (Hg2+) such as HgCl2 under oxidation condition. However, the effect of HCl on the oxidation of Hg0 was much less under SCR condition than oxidation condition. The activity for Hg0 oxidation increased with the decrease of NH3/NO ratio under SCR condition. This might be attributed to the strong adsorption of NH3 prohibiting the adsorption of HCl which was vital species promoting the oxidation of Hg0 on the catalyst surface under SCR condition.


Mercury Oxidation Selective Catalytic Reduction Hydrogen Chloride Elemental and Oxidized Mercury 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. E. Lindberg and W. J. Stratton, Environ. Sci. Technol., 32, 49 (1998).CrossRefGoogle Scholar
  2. 2.
    C. C. Travis and B. P. Blaylock, Toxicol. Environ. Chem., 49, 203 (1995).CrossRefGoogle Scholar
  3. 3.
    U. S. Government Printing Office, Mercury study report to congress, Washington, DC (1997).Google Scholar
  4. 4.
    U. S. Government Printing Office, A study of hazardous air pollutant from electric utility steam generating units: Final report to congress, Washington, DC (1998).Google Scholar
  5. 5.
    U. S. Environmental Protection Agency, U. S. EPA clean air mercury rule, Washington, DC (2005).Google Scholar
  6. 6.
    J. C. S. Chang and S. B. Ghorishi, Environ. Sci. Technol., 37, 5763 (2003).CrossRefGoogle Scholar
  7. 7.
    P. S. Nolan, K. E. Redinger, G. T. Amrhein and G. A. Kudlac, Fuel Process Technol., 85, 587 (2004).CrossRefGoogle Scholar
  8. 8.
    R. D. Vidic and D. P. Siler, Carbon, 39, 3 (2001).CrossRefGoogle Scholar
  9. 9.
    S. V. Krishnan, B. K. Gullett and W. Jorewlczt, Environ. Sci. Technol., 28, 1506 (1994).CrossRefGoogle Scholar
  10. 10.
    R. D. Vidic and J. B. McLaughlin, J. Air Waste Manage. Assoc., 46, 241 (1996).Google Scholar
  11. 11.
    W. J. O’Dowd, R. A. Hargis, E. J. Granite and H. W. Pennline, Fuel Process Technol., 85, 533 (2004).CrossRefGoogle Scholar
  12. 12.
    E. Pitoniak, C. Y. Wu, D. W. Mazyck, K. W. Powers and W. Sigmund, Environ. Sci. Technol., 39, 1269 (2005).CrossRefGoogle Scholar
  13. 13.
    J. W. Portzer, J. R. Albritton, C. C. Allen and R. P. Gupta, Fuel Process Technol., 85, 621 (2004).CrossRefGoogle Scholar
  14. 14.
    E. J. Granite, H. W. Pennline and R. A. Hargis, Ind. Eng. Chem. Res., 39, 1020 (2000).CrossRefGoogle Scholar
  15. 15.
    T. Garey, in Proceedings of the Air and Waste Management Association’s 92 nd Annual Meeting, June, Pittsburgh PA (1999).Google Scholar
  16. 16.
    S. Niksa and N. Fujiwara, J. Air Waste Manage. Assoc., 55, 1866 (2005).Google Scholar
  17. 17.
    S. Straube, T. Hahn and H. Koeser, Appl. Catal. B: Environ., 79, 286 (2008).CrossRefGoogle Scholar
  18. 18.
    C. Lee, R. Srivastava, S. Ghorishi, T. Hastings and F. Stevens, J. Air Waste Manage. Assoc., 54, 1560 (2004).Google Scholar
  19. 19.
    G. Dunham, R. DeWall and C. Senior, Fuel Process Technol., 82, 197 (2003).CrossRefGoogle Scholar
  20. 20.
    E. Olsen, S. Miller, R. Sharma, G. Dunham and S. Benson, J. Hazard. Mater., 74, 61 (2000).CrossRefGoogle Scholar
  21. 21.
    S. Kellie, Y. Cao, Y. Duan, L. Li, P. Chu, A. Mehta, R. Carty, J. Riley and W. Pan, Energy Fuels, 19, 800 (2005).CrossRefGoogle Scholar
  22. 22.
    S. Ghorishi, C. Lee, W. Jozewicz and J. Kilgroe, Environ. Eng. Sci., 22, 221 (2005).CrossRefGoogle Scholar
  23. 23.
    Y. Zhao, M. Mann, J. Pavlish, B. Mibeck, G. Dunham and E. Olson, Environ. Sci. Technol., 40, 1603 (2006).CrossRefGoogle Scholar
  24. 24.
    J. Pavlish, E. Sondreal, M. Mann, E. Olson, K. Galbreath, D. Laudal and S. Benson, Fuel Process Technol., 82, 89 (2003).CrossRefGoogle Scholar
  25. 26.
    S. W. Ham and I. S. Nam, Catalysis Vol. 16, Ed. J. J. Spivey, The Royal Society of Chemistry, Cambridge, 236 (2002).CrossRefGoogle Scholar
  26. 27.
    S. C. Choo, I. S. Nam, S. W. Ham and J. B. Lee, Korean J. Chem. Eng., 20(2), 273 (2003).CrossRefGoogle Scholar
  27. 28.
    S. W. Ham, I. S. Nam and Y. G. Kim, Korean J. Chem. Eng., 17(3), 318 (2000).CrossRefGoogle Scholar
  28. 29.
    A. Miyamoto, Y. Yamazaki, T. Hattori, M. Inomata and Y. Murakami, J. Catal., 74, 144 (1982).CrossRefGoogle Scholar
  29. 30.
    S. C. Wu and K. Nobe, Ind. Eng. Chem. Prod. Res. Dev., 16, 136 (1977).CrossRefGoogle Scholar
  30. 31.
    A. A. Presto and E. J. Granite, Environ. Sci. Technol., 40, 5601 (2006).CrossRefGoogle Scholar
  31. 32.
    A. Miyamoto, M. Inomata, Y. Yamazaki and Y. Murakami, J. Catal., 57, 526 (1979).CrossRefGoogle Scholar
  32. 33.
    M. Inomata, A. Miyamoto and Y. Murakami, J. Catal., 62, 140 (1980).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Hyun-Jo Hong
    • 1
  • Sung-Won Ham
    • 1
  • Moon Hyeon Kim
    • 2
  • Seung-Min Lee
    • 3
  • Jung-Bin Lee
    • 3
  1. 1.Department of Display & Chemical EngineeringKyungil UniversityGyeongsanKorea
  2. 2.Department of Environmental EngineeringDaegu UniversityGyeongsanKorea
  3. 3.Korea Electric Power Research Institute (KEPRI)DaejeonKorea

Personalised recommendations