Advertisement

Korean Journal of Chemical Engineering

, Volume 27, Issue 4, pp 1109–1116 | Cite as

Parameter effect on photocatalytic degradation of phenol using TiO2-P25/activated carbon (AC)

  • Sze-Mun Lam
  • Jin-Chung Sin
  • Abdul Rahman Mohamed
Catalysis, Reaction Engineering

Abstract

P25 powder embedded and TiO2 immobilized on activated carbon (TiO2-P25/AC) was prepared by P25 powder modified sol-gel and dip-coated method. The photocatalysts were characterized by XRD, BET, SEM and their photocatalytic activities were evaluated through phenol degradation in a fluidized bed photoreactor. The addition of P25 in the photocatalysts could significantly enhance the photocatalytic activity, and the optimum loading of P25 was 3 g L−1. The operating parameter results indicated that the optimum pH for phenol degradation was 5.2; the effect of air flow rate gave an optimal value of 2 L min−1; the increasing of UV light intensity led to an increase of degradation efficiency due to more photons absorbed on the surface of the photocatalyst. The kinetics of the phenol degradation fitted well with the Langmuir-Hinshelwood kinetics model. Finally, the photocatalytic ability of TiO2-P25/AC was reduced only 10% after five cycles for phenol degradation.

Key words

TiO2-P25/AC Phenol Modified Sol-gel Photocatalytic Degradation Langmuir-Hinshelwood Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.W. Oh, G.D. Lee, S. S. Park, C. S. Ju and S. S. Hong, Korean J. Chem. Eng., 22, 547 (2005).CrossRefGoogle Scholar
  2. 2.
    A. L. Linsebigler, G. Q. Lu and J.T. Yates, Chem. Rev., 95, 735 (1995).CrossRefGoogle Scholar
  3. 3.
    M.R. Hoffman, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev., 95, 69 (1995).CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobio. C: Photochem. Rev., 1, 1 (2000).CrossRefGoogle Scholar
  5. 5.
    P. R. Gogate and A. B. Pandit, Adv. Environ. Res., 8, 501 (2004).CrossRefGoogle Scholar
  6. 6.
    R. Thiruvenkatachari, S. Vigneswaran and I. S. Moon, Korean J. Chem. Eng., 25, 64 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. J. Chen, E. Stathatos and D.D. Dionysiou, J. Photochem. Photobio. A: Chem., 203, 192 (2009).CrossRefGoogle Scholar
  8. 8.
    V. Durgakumari, M. Subrahmanyam, K.V. Subba Rao, A. Ratnamala, M. Noorjahan and K. Tanaka, Appl. Catal. A: Gen., 234, 155 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Kang, Appl. Catal. B: Environ., 37, 187 (2002).CrossRefGoogle Scholar
  10. 10.
    F. Thevenet, O. Guaitella, J. M. Herrmann, A. Rousseau and C. Guillard, Appl. Catal. B: Environ., 61, 58 (2005).CrossRefGoogle Scholar
  11. 11.
    J.K. Han, S. M. Choi and G.H. Lee, Mater. Lett., 61, 3798 (2007).CrossRefGoogle Scholar
  12. 12.
    X. Z. Li and H. Liu, Environ. Sci. Tech., 37, 3989 (2003).CrossRefGoogle Scholar
  13. 13.
    G. Balasubramanian, D.D. Dionysiou, M. T. Suidan, I. Baudin and J.M. Laine, Appl. Catal. B: Environ., 47, 73 (2004).CrossRefGoogle Scholar
  14. 14.
    S. X. Liu, X. Y. Chen and X. Chen, J. Hazard. Mater., 143, 257 (2007).CrossRefGoogle Scholar
  15. 15.
    G. Balasubramanian, D.D. Dionysiou and M. T. Suidan, J. Mater. Sci., 38, 823 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Keshmiri, M. Mohseni and T. Troczynski, Appl. Catal. B: Environ., 53, 209 (2004).CrossRefGoogle Scholar
  17. 17.
    Y. J. Chen and D.D. Dionysiou, J. Mol. Catal. A: Chem., 244, 73 (2006).CrossRefGoogle Scholar
  18. 18.
    Y. J. Chen and D. D. Dionysiou, Appl. Catal. A: Gen., 317, 129 (2007).CrossRefGoogle Scholar
  19. 19.
    Y. J. Chen and D.D. Dionysiou, Appl. Catal. B: Environ., 69, 24 (2006).CrossRefGoogle Scholar
  20. 20.
    J. Matos, J. Laine and J.M. Herrmann, Appl. Catal. B: Environ., 70, 461 (2007).CrossRefGoogle Scholar
  21. 21.
    D.K. Lee, S. C. Kim, S. J. Kim, I. S. Chun and S.W. Kim, Chem. Eng. J., 102, 93 (2004).CrossRefGoogle Scholar
  22. 22.
    Y. J. Li, X. D. Li, J.W. Li and J. Yin, Wat. Res., 40, 1119 (2006).CrossRefGoogle Scholar
  23. 23.
    Y. J. Li, S.Y. Zhang, Q.M. Yu and W. B. Yin, Appl. Surf. Sci., 253, 9254 (2007).CrossRefGoogle Scholar
  24. 24.
    Y. Z. Liu, S.G. Yang, J. Hong and C. Sun, J. Hazard. Mater., 142, 208 (2007).CrossRefGoogle Scholar
  25. 25.
    C. R. Chenthamarakshan, N. R. D. Tacconi, R. Krishnan and R. Shiratsuchi, Electrochem. Communications, 4, 871 (2002).CrossRefGoogle Scholar
  26. 26.
    C.G. Silva and J. L. Faria, J. Mol. Catal. A: Chem., 305, 147 (2009).CrossRefGoogle Scholar
  27. 27.
    B. Sun and P. G. Smirniotis, Catal. Today, 88, 49 (2003).CrossRefGoogle Scholar
  28. 28.
    J.M. Valtierra, J.G. Servin, C. F. Reyes and S. Calixto, Appl. Surf. Sci., 252, 3600 (2006).CrossRefGoogle Scholar
  29. 29.
    K. Naeem and O. Y. Feng, J. Environ. Sci., 21, 527 (2009).CrossRefGoogle Scholar
  30. 30.
    C. H. Chiou, C. Y. Wu and R. S. Juang, Chem. Eng. J., 139, 322 (2008).CrossRefGoogle Scholar
  31. 31.
    D.W. Chen and A.K. Ray, Wat. Res., 32, 3223 (1998).CrossRefGoogle Scholar
  32. 32.
    I.K. Konstantinou and T.A. Albanis, Appl. Catal. B: Environ., 49, 1 (2004).CrossRefGoogle Scholar
  33. 33.
    S. Bekkouche, M. Bouhelassa, N.H. Salah and F. Z. Meghlaoui, Desalination, 166, 355 (2004).CrossRefGoogle Scholar
  34. 34.
    Y. S. Na, S.K. Song and Y. S. Park, Korean J. Chem. Eng., 22, 196 (2005).CrossRefGoogle Scholar
  35. 35.
    T.H. Lim and S. D. Kim, Chem. Eng. Processing, 44, 327 (2005).CrossRefGoogle Scholar
  36. 36.
    W. S. Nam, K. C. Woo and G.Y. Han, J. Ind. Eng. Chem., 15, 348 (2009).Google Scholar
  37. 37.
    M. F. J. Dijkstra, A. Michorius, H. Buwalda, H. J. Panneman, J.G.M. Winkelman and A. A. C. M. Beenackers, Catal. Today, 66, 487 (2001).CrossRefGoogle Scholar
  38. 38.
    H. Zhu, M. P. Zhang, Z. F. Xia and K. C. Gary Low, Wat. Res., 29, 2681 (1995).CrossRefGoogle Scholar
  39. 39.
    W. S. Nam, J. M. Kim and G.Y. Han, Chemosphere, 47, 1019 (2002).CrossRefGoogle Scholar
  40. 40.
    L. F. Zhang, T. Kanki, N. Sano and A. Toyoda, Sep. Purif. Tech., 31, 105 (2003).CrossRefGoogle Scholar
  41. 41.
    M.N. Chong, B. Jin, H.Y. Zhu, C. W. K. Chow and C. Saint, Chem. Eng. J., 15, 49 (2009).CrossRefGoogle Scholar
  42. 42.
    D. F. Ollis, E. Pelizzatti and N. Serpone, Environ. Sci. Techno., 35, 1523 (1991).Google Scholar
  43. 43.
    K. Mehrota, G. S. Yablonsky and A.K. Ray, Chemosphere, 60, 1427 (2005).CrossRefGoogle Scholar
  44. 44.
    M. L. Chin, A. R. Mohamed and S. Bhatia, Chemosphere, 57, 547 (2004).CrossRefGoogle Scholar
  45. 45.
    X. L. Zhu, C.W. Yuan, Y. C. Bao, J.H. Yang and Y. Z. Wu, J. Mol. Catal. A: Chem., 229, 95 (2005).CrossRefGoogle Scholar
  46. 46.
    W. Y. Wang, A. Irawan and Y. Ku, Wat. Res., 42, 4725 (2008).CrossRefGoogle Scholar
  47. 47.
    A. P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai and V. Singh, Dye Pigment, 68, 53 (2006).CrossRefGoogle Scholar
  48. 48.
    A.N. Okte and O. Yilmaz, Appl. Catal. B: Environ., 85, 92 (2008).CrossRefGoogle Scholar
  49. 49.
    J. H. Sun, Y. K. Wang, R. X. Sun and S. Y. Dong, Mater. Chem. Phys., 115, 303 (2009).CrossRefGoogle Scholar
  50. 50.
    M. Muruganandham and M. Swaminathan, J. Hazard. Mater., B135, 78 (2006).CrossRefGoogle Scholar
  51. 51.
    N. San, A. Hatipoglu, G. Kocturk and Z. Cinar, J. Photochem. Photobio. A: Chem., 146, 189 (2002).CrossRefGoogle Scholar
  52. 52.
    M. Sleiman, D. Vildozo, C. Ferronato and J. M. Chovelon, Appl. Catal. B: Environ., 77, 1 (2007).CrossRefGoogle Scholar
  53. 53.
    C.M. So, M.Y. Cheng, J. C. Yu and P.K. Wong, Chemosphere, 46, 905 (2002).CrossRefGoogle Scholar
  54. 54.
    Y.H. Ao, J. J. Xu, D.G. Fu, X.W. Shen and C.W. Yuan, Colloids Surf. A: Physicochem. Eng. Aspects, 312, 125 (2008).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Sze-Mun Lam
    • 1
  • Jin-Chung Sin
    • 1
  • Abdul Rahman Mohamed
    • 1
  1. 1.School of Chemical EngineeringUniversiti Sains Malaysia, Engineering CampusNibong Tebal, Pulau PinangMalaysia

Personalised recommendations