Korean Journal of Chemical Engineering

, Volume 27, Issue 2, pp 632–638 | Cite as

Breakthrough data analysis of adsorption of volatile organic compounds on granular activated carbon

  • Kwang-Joong Oh
  • Dae-Won Park
  • Seong-Soo Kim
  • Sang-Wook ParkEmail author
Separation Technology, Thermodynamics


Volatile Organic Compounds (VOCs) such as methanol, ethanol, methyl ethyl keton, benzene, n-propanol, toluene, and o-xylene were adsorbed in a laboratory-scale packed-bed adsorber using granular activated carbon (GAC) at 101.3 kPa. The adsorber was operated batchwise to obtain the breakthrough curves of VOCs under the adsorption conditions such as adsorption temperatures (298–323 K), flow rates of nitrogen (60×10−6-150×10−6m3/min), GAC amount of 0.002 kg, and concentration of VOCs (3,000–6,000 ppmv). The adsorption kinetics was obtained by fitting the experimental breakthrough data to the deactivation model, combining the adsorption of VOCs and the deactivation of GAC. The adsorption isotherm, and adsorbed amount and adsorption heat of VOCs were obtained using the breakthrough curve: the former for comparison with the conventional isotherm models, the latter for correlation with the physical properties of VOCs.

Key words

Adsorption VOCs Activated Carbon Breakthrough Curve Deactivation Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. T. Yang, Gas separation by adsorption processes, Butterworth, Boston (1987).Google Scholar
  2. 2.
    D. W. Ruthven, Principles of adsorption and adsorption processes, John & Wiley, New York (1984).Google Scholar
  3. 3.
    L. K. Doraiswamy and M. M. Sharma, Heterogeneous reactions, John Wiley & Sons, New York (1954).Google Scholar
  4. 4.
    N. Orbey, G. Dogu and T. Dogu, Can. J. Chem. Eng., 60, 314 (1982).CrossRefGoogle Scholar
  5. 5.
    M. Suzuki, Adsorption engineering, Kodansga Ltd., Tokyo (1990).Google Scholar
  6. 6.
    S. Yasyerli, T. Dogu, G. Dogu and I. Ar, Chem. Eng. Sci., 51, 2523 (1996).CrossRefGoogle Scholar
  7. 7.
    Y. Suyadal, M. Erol and M. Oguz, Ind. Eng. Chem. Res., 39, 724 (2000).CrossRefGoogle Scholar
  8. 8.
    T. Kopac and S. Kocabas, Chem. Eng. Comm., 190, 1041 (2003).CrossRefGoogle Scholar
  9. 9.
    S. W. Park, B. S. Choi and J. W. Lee, Sep. Sci. Technol., 42, 2221 (2007).CrossRefGoogle Scholar
  10. 10.
    S. W. Park, D. H. Sung B. S. Choi and K. W. Oh, Sep. Sci. Technol., 41, 2665 (2006).CrossRefGoogle Scholar
  11. 11.
    S. W. Park, D. H. Sung, B. S. Choi, J. W. Lee and H. Kumazawa, J. Ind. Eng. Chem., 12, 522 (2006).Google Scholar
  12. 12.
    K. S. Hwang, S. W. Park, D. W. Park, K. J. Oh and S. S. Kim, Korean J. Chem. Eng., 26(4) (2009).Google Scholar
  13. 13.
    T. Dogu, Am. Inst. Chem. Eng. J., 32, 849 (1986).CrossRefGoogle Scholar
  14. 14.
    J. K. Lim, S. W. Lee, S. K. Kim, D. K. Lee and M. G. Lee, J. Environmental Sci., 14, 61 (2005).CrossRefGoogle Scholar
  15. 15.
    R. C. Reid, J. M. Prausnitz and B. E. Poling, The properties of gases & liquids, 4th Ed., McGraw-Hill Book Co., New York (1987).Google Scholar
  16. 16.
    D. Kim, W. G. Shim and H. Moon, Korean J. Chem. Eng., 18(4), 518 (2001).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2010

Authors and Affiliations

  • Kwang-Joong Oh
    • 1
  • Dae-Won Park
    • 1
  • Seong-Soo Kim
    • 2
  • Sang-Wook Park
    • 1
    Email author
  1. 1.Division of Chemical EngineeringPusan National UniversityBusanKorea
  2. 2.School of Environmental ScienceCatholic University of PusanBusanKorea

Personalised recommendations