Advertisement

Korean Journal of Chemical Engineering

, Volume 27, Issue 1, pp 183–186 | Cite as

Strain improvement of Rhizopus oryzae for over-production of fumaric acid by reducing ethanol synthesis pathway

  • Yong-Qian Fu
  • Qing Xu
  • Shuang Li
  • Yao Chen
  • He Huang
Rapid Communication

Abstract

Rhizopus oryzae mutants were isolated from the wild type strain ME-F01 after mutagenesis with UV coupled with nitrosoguanidine (NTG) and the following allyl alcohol resistance selection method. By analyzing the activities of alcohol dehydrogenase (ADH) involved in ethanol synthesis pathway and batch fermentation, one mutant, ME-UN-8, was isolated that produced 21.1% more fumaric acid than ME-F01 with the corresponding byproduct of ethanol decreased by 83.7%.

Key words

Alcohol Dehydrogenase Allyl Alcohol Fumaric Acid Mutation Rhizopus oryzae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Liao, Y. Liu, C. Frear and S. L. Chen, Bioresource Technol., 99, 5859 (2008).CrossRefGoogle Scholar
  2. 2.
    Anon, Ind. Biopro., 27, 11 (2005).Google Scholar
  3. 3.
    L. B. Ling and T. K. Ng, US Patent 4,877,731 (1989).Google Scholar
  4. 4.
    E. Riscaldati, M. Moresi, F. Federici and M Petruccioli, Biotechnol. Lett., 22, 1043 (2000).CrossRefGoogle Scholar
  5. 5.
    W. Kenealy, E. Zaady, J. C. Dupreez, B. Stieglitz and I. Goldberg, Appl. Environ. Microbiol., 52, 128 (1986).Google Scholar
  6. 6.
    S.A. Osmani and M. C. Scrutton, Eur. J. Biochem., 47, 119 (1985).CrossRefGoogle Scholar
  7. 7.
    Y. Peleg, E. Battat, M. C. Scrutton and I. Goldberg, Appl. Microbiol. Biotechnol., 32, 334 (1989).CrossRefGoogle Scholar
  8. 8.
    N. J. Cao, J.X. Du, C. S. Gong and G. T. Tsao, Appl. Environ. Microbiol., 62, 2926 (1996).Google Scholar
  9. 9.
    Y. Zhou, J. Du and G.T. Tsao, Bioproc. Biosys. Eng., 25, 179 (2002).CrossRefGoogle Scholar
  10. 10.
    J.X. Du, N. J. Cao, C. S. Gong, G. T. Tsao and N. J. Yuan, Appl. Biochem. Biotech., 63–65, 541 (1997).CrossRefGoogle Scholar
  11. 11.
    A. Arpornwichanop and N. Shomchoam, Korean J. Chem. Eng., 24, 11 (2007).CrossRefGoogle Scholar
  12. 12.
    C.D. Skory, S.N. Freer and R. J. Bothast, Biotechnol. Lett., 20, 191 (1998).CrossRefGoogle Scholar
  13. 13.
    Z. Zheng, S. Z. Luo, X. J. Li, X. F. Wu, L. J. Pan and S. T. Jiang, Afr. J. Biotechnol., 8, 280 (2009).Google Scholar
  14. 14.
    W. Suntornsuk and Y. D. Hang, Lett. Appl. Microbiol., 19, 249 (1994).CrossRefGoogle Scholar
  15. 15.
    G. T. Tsao, N. J. Cao, J. Du and C. S. Gong, Adv. Biochem. Eng. Biot., 65, 243 (1999).Google Scholar
  16. 16.
    S.A. Osmani and M. C. Scrutton, Eur. J. Biochem., 133, 551 (1983).CrossRefGoogle Scholar
  17. 17.
    R. A. Rhodes, A. J. Moyer, M. L. Smith and S. E. Kelley, Appl. Microbiol., 7, 74 (1959).Google Scholar
  18. 18.
    I. C. Gangl, W. A. Weigand and F.A. Keller, Appl. Biochem. Biotech., 28/29, 471 (1991).CrossRefGoogle Scholar
  19. 19.
    D.M. Bai, X. M. Zhao, X.G. Li and S.M. Xu, Biochem. Eng. J., 18, 41 (2004).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2009

Authors and Affiliations

  • Yong-Qian Fu
    • 1
  • Qing Xu
    • 1
  • Shuang Li
    • 1
  • Yao Chen
    • 1
  • He Huang
    • 1
  1. 1.College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical EngineeringNanjing University of TechnologyNanjingP. R. China

Personalised recommendations