Korean Journal of Chemical Engineering

, Volume 26, Issue 6, pp 1662–1667 | Cite as

Integrated anaerobic/aerobic biodegradation in an internal airlift loop reactor for phenol wastewater treatment

  • Zhouyang Zhao
  • Guoqiang Jiang
  • Shengyang Jiang
  • Fuxin Ding
Biotechnology

Abstract

Anaerobic and aerobic biodegradation were integrated in an internal airlift loop reactor (IALR) by adding porous microbial carriers. In this bioreactor, aerobic activated sludge was suspended in the liquid bulk, while the anaerobic microbes were attached within the core of carriers. The integrated IALR was applied to the treatment of synthetic phenol wastewater. After 50 days’ acclimation according to co-substance strategy, the influent COD decreased from 3,700 mg/L to 400 mg/L (phenol removal rate was over 99%) with the residence time of 24 h. High performance could be achieved under the operation condition of superficial gas flow rate higher than 0.07 cm/s, temperature beyond 15°C and the microbial carrier volume fraction larger than 5%. Integration of anaerobic/aerobic biodegradation in IALR enhanced the synergetic effects between aerobic and anaerobic degradation; therefore, it has great potential in the treatment of phenol wastewater and other wastewater containing hard biodegradable organics.

Key words

Anaerobic/Aerobic Biodegradation Porous Microbial Carriers Internal Airlift Loop Reactor Phenol Wastewater Treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Mahvi, A. Maleki, M. Alimohamadi and A. Ghasri, Korean J. Chem. Eng., 24, 79 (2007).CrossRefGoogle Scholar
  2. 2.
    G. Buitrón, I. Moreno-Andrade, J. Pérez, M. J. Betancur and J.A. Moreno, Water Sci. Technol., 54, 273 (2006).Google Scholar
  3. 3.
    H. H. P. Fang and O. Chan, Water Res., 31, 2229 (1997).CrossRefGoogle Scholar
  4. 4.
    A. Karlsson, J. Ejlertsson, D. Nezirevic and B. H. Svensson, Anaerobe, 5, 25 (1999).CrossRefGoogle Scholar
  5. 5.
    H.H. P. Fang, D.W. Liang, T. Zhang and Y. Liu, Water Res., 40, 427 (2006).CrossRefGoogle Scholar
  6. 6.
    R. Subramanyam and I. M. Mishra, Chemosphere, 69, 816 (2007).CrossRefGoogle Scholar
  7. 7.
    K.M. Lee and P. E. Lim, Water Sci. Technol., 47, 41 (2003).Google Scholar
  8. 8.
    S. Chakraborty and H. Veeramani, Biores. Technol., 96, 761 (2005).CrossRefGoogle Scholar
  9. 9.
    P. S. Majumder and S.K. Gupta, Biores. Technol., 99, 2930 (2008).CrossRefGoogle Scholar
  10. 10.
    A. F. Ramos, M.A. Gómez, E. Hontoria and J. González-López, J. Hazard. Mater., 142, 175 (2007).CrossRefGoogle Scholar
  11. 11.
    A. Uygur and F. Kargi, Proc. Biochem., 39, 2123 (2004).CrossRefGoogle Scholar
  12. 12.
    R. Del Pozo and V. Diez, Water Res., 39, 1114 (2005).CrossRefGoogle Scholar
  13. 13.
    X.H. Xing, N. Shiragami and H. Unno, J. Chem. Eng. Jpn., 28, 525 (1995).CrossRefGoogle Scholar
  14. 14.
    X.H. Xing, B.H. Jun, M. Yanagida, Y. Tanji and H. Unno, Biochem. Eng. J., 5, 29 (2000).CrossRefGoogle Scholar
  15. 15.
    S. L. Chen, F. Li, Y. Qiao, H. G. Yang and F. X. Ding, Water Sci. Technol., 51, 75 (2005).Google Scholar
  16. 16.
    APHA, AWWA, and WEF, Standard methods for the examination of water and wastewater, 21st edn, Washington D.C. (2005).Google Scholar
  17. 17.
    G. Busca, S. Berardinelli, C. Resini and L. Arrighi, J. Hazard. Mater., 160, 265 (2008).CrossRefGoogle Scholar
  18. 18.
    G. S. Veeresh, P. Kumar and I. Mehrotra, Water Res., 39, 154 (2005).CrossRefGoogle Scholar
  19. 19.
    S. Sarfaraz, S. Thomas, U. K. Tewari and L. Iyengar, Water Res., 38, 965 (2004).CrossRefGoogle Scholar
  20. 20.
    A. Ramakrishnan and S. K. Gupta, J. Hazard. Mater., 137, 1488 (2006).CrossRefGoogle Scholar
  21. 21.
    M. E. Suarez-Ojeda, A. Guisasola, J. A. Baeza, A. Fabregat, F. Stüber, A. Fortuny, J. Font and J. Carrera, Chemosphere, 66, 2096 (2007).CrossRefGoogle Scholar
  22. 22.
    Y. Fan, L. Wang, J. Chen, W. M. Zhang, Z. Liu and F.X. Ding, Environ. Eng. (Chinese), 18, 9 (2000).Google Scholar
  23. 23.
    S. L. Chen, F.X. Ding, H.G. Yang and T. M. Jiang, J. Tsinghua Univ. (Sci. and Tech.), 43, 746 (2003).Google Scholar
  24. 24.
    C.K. Lin, T.Y. Tsai, J. C. Liu and M.C. Chen, Water Res., 35, 699 (2001).CrossRefGoogle Scholar
  25. 25.
    S.M. Borghei and S.H. Hosseini, Proc. Biochem., 39, 1177 (2004).CrossRefGoogle Scholar
  26. 26.
    X.H. Xing, H. Honda, N. Shiragami and H. Unno, J. Chem. Eng. Jpn., 25, 89 (1992).CrossRefGoogle Scholar
  27. 27.
    G. John and K. Schügerl, J. Biotechnol., 50, 115 (1996).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2009

Authors and Affiliations

  • Zhouyang Zhao
    • 1
  • Guoqiang Jiang
    • 1
  • Shengyang Jiang
    • 1
  • Fuxin Ding
    • 1
  1. 1.Department of Chemical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations