Korean Journal of Chemical Engineering

, Volume 26, Issue 4, pp 935–945

Development of MBPLS based control for serial operation processes



A control scheme based on the multiblock PLS (MBPLS) model for multi-stage processes (or serially connected processes) is developed. MBPLS arranges a large number of variables into meaningful blocks for each stage of the large-scale system. Two control design strategies, course-to-course (CtC) and within-stage (WS) controls, are proposed for the re-optimization design in the whole multistage course. In CtC, MBPLS control and optimization are done by applying feedback from the finished output quality when one course for all stages is done. It utilizes the information from the current course to improve quality of the next one. In WS, the MBPLS-based re-optimization strategy is developed to explore the possible adjustments of the future inputs at the rest of the stages in order to fix up the disturbances just in time and to maintain the product specification when the current course is finished. The proposed technique is successfully applied to two simulated industrial problems, including a photolithography sequences and a reverse osmosis desalination process, and the advantages of the proposed method are demonstrated.

Key words

Iterative Learning Control Multistage Process Partial Least Squares 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Morud and S. Skogestad, The dynamic behavior of cascade processes with application to distillation columns, AIChE Annual Meeting, Miami Beach (1995).Google Scholar
  2. 2.
    J. S. Fenner, M. K. Jeong and J.-C. Lu, IEEE Trans. Semicond. Manuf., 18, 94 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Vaidyanathan, Stochastic control of sequential manufacturing process, Ph.D dissertation, Carnegie Mellon Univ., Pittsburgh, PA (1991).Google Scholar
  4. 4.
    O. Abel and W. Marquardt, AIChE J., 46, 803 (2000).CrossRefGoogle Scholar
  5. 5.
    Y. Zhang and S. Li, J. Process Contr., 17, 37 (2007).CrossRefGoogle Scholar
  6. 6.
    J. Chen and F. Wang, J. Process Contr., 17, 309 (2007).CrossRefGoogle Scholar
  7. 7.
    J. Flores-Cerrillo and J. F. MacGregor, Ind. Eng. Chem. Res., 44, 9146 (2005).CrossRefGoogle Scholar
  8. 8.
    J. A. Westerhuis and A. K. Smilde, J. Chemometrics, 15, 485 (2001).CrossRefGoogle Scholar
  9. 9.
    S.W. Choi and I.-B. Lee, J. Process Contr., 15, 295 (2005).CrossRefGoogle Scholar
  10. 10.
    J. A. Lopes, J. C. Menezes, J. A. Westerhuis and A. K. Smilde, Biotechnol. Bioeng., 80, 419 (2002).CrossRefGoogle Scholar
  11. 11.
    J. F. MacGregor, C. Jaeckle, C. Kiparissides and M. Kourtoudi, AIChE J., 40, 826 (1994).CrossRefGoogle Scholar
  12. 12.
    S. J. Qin, S. Valle and M. J. Piovoso, J. Chemometrics, 15, 715 (2001).CrossRefGoogle Scholar
  13. 13.
    W. R. Zwick and W. F. Velicer, Psychological Bulletin, 99, 432 (1986).CrossRefGoogle Scholar
  14. 14.
    S.W. Choi and I.-B. Lee, J. Process Contr., 15, 295 (2005).CrossRefGoogle Scholar
  15. 15.
    S. Wold, N. Kettaneh and K. Tjessem, J. Chemometrics, 10, 463 (1996).CrossRefGoogle Scholar
  16. 16.
    L. E. Wangen and B. R. Kowalski, J. Chemometrics, 3, 3 (1988).CrossRefGoogle Scholar
  17. 17.
    S. Leang, S.Y. Ma, J. Thomson, B. J. Bombay and C. J. Spanos, IEEE Trans. Semicond. Manuf., 9, 191 (1996).CrossRefGoogle Scholar
  18. 18.
    S. Leang and C. J. Spanos, IEEE Trans. Semicond. Manuf., 9, 101 (1996).CrossRefGoogle Scholar
  19. 19.
    Y.-Y. Lu, Y.-D. Hu, D.-M. Xu and L.-Y. Wu, J. Membr. Sci., 282, 7 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Zhu, M. M. El-Halwagi and M. Al-Ahmad, J. Membr. Sci., 129, 161 (1997).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2009

Authors and Affiliations

  1. 1.R&D Center for Membrane Technology and Department of Chemical EngineeringChung-Yuan Christian UniversityChung-LiTaiwan, China

Personalised recommendations