Korean Journal of Chemical Engineering

, Volume 26, Issue 2, pp 411–416

Continuous production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Effects of C/N ratio and dilution rate on HB/HV ratio

Biotechnology

Abstract

Ralstonia eutropha was cultivated in a continuous stirred fermenter with various C/N ratios (20, 30, and 40), dilution rates, and organic salt substrates (sodium propionate or sodium valerate) to explore the microbial growth and the poly(3HB-co-3HV) accumulation. When sodium propionate was used as the secondary carbon source, the HB/HV molar ratio at various C/N ratios and dilution rates did not change appreciably (approximately 90: 10). The highest poly(3HB-co-3HV) content in biomass (41.8%) and poly(3HB-co-3HV) productivity (0.100 g/(L·h)) occurred under the condition with a C/N ratio of 20 and dilution rate of 0.06 h−1. When sodium valerate was used as the secondary carbon source, the productivity of poly(3HB-co-3HV) increased with increasing dilution rate for the C/N ratio of 30 and 40. The average HB/HV molar ratio ranged from 48: 52 to 78: 32. The feeding of sodium valerate promoted the accumulation of HV better than feeding sodium propionate did. This study shows that a potential strategy of manipulating by both C/N ratio and dilution rate could be used to control the HV unit fraction in poly(3HB-co-3HV) in a continuous cultivation.

Key words

Poly(3HB-co-3HV) Continuous Cultivation Dilution Rate Ralstonia eutropha C/N Ratio Propionate Valerate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. J. Anderson and E. A. Dawes, Microbiol Rev., 54, 450 (1990).Google Scholar
  2. 2.
    J. Choi and S.Y. Lee, Appl. Microbiol. Biotechnol., 51, 13 (1999).CrossRefGoogle Scholar
  3. 3.
    Y. Dai, Z.G. Yuan, K. Jack and J. Keller, J. Biotechnol., 139, 489 (2007).CrossRefGoogle Scholar
  4. 4.
    C. Kasemsap and C. Wantawin, Bioresource Technol., 98, 1020 (2007).CrossRefGoogle Scholar
  5. 5.
    Y. Doi and K. Fukuda, Biodegradable plastics and polymers, Elsevier, Tokyo, 120–135 (1994).Google Scholar
  6. 6.
    G. C. Du, J. Chen, J. Yu and S. Lun, Process Biochem., 37, 219 (2001).CrossRefGoogle Scholar
  7. 7.
    I. C. Ho, S. P. Yang, W.Y. Chiu and S.Y. Huang, International J. Biological Macromol., 40, 112 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Matsusaki, H. Abe and Y. Doi, Biomacromolecules, 1, 17 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. Ishihara, H. Shimizu and S. Shioya, J. Ferment. Bioeng., 81, 422 (1996).CrossRefGoogle Scholar
  10. 10.
    I.Y. Lee, M. K. Kim, H.N. Chang and Y. H. Park, Biotechnol. Lett., 16, 611 (1994).CrossRefGoogle Scholar
  11. 11.
    S. Y. Lee, Biotechnol. Bioeng., 49, 1 (1996).CrossRefGoogle Scholar
  12. 12.
    K. S. Yim, S.Y. Lee and H. N. Chang, Korean J. Chem. Eng., 12, 264 (1995).CrossRefGoogle Scholar
  13. 13.
    Q. Yan, G. C. Du and J. Chen, Process Biochem., 39, 387 (2003).CrossRefGoogle Scholar
  14. 14.
    L.G. Shang, S. C. Yim, H.G. Park and H. N. Chang, Biotechnol. Prog., 20, 140 (2004).CrossRefGoogle Scholar
  15. 15.
    G. C. Du, J. Chen, J. Yu and S. Y. Lun, Biochem. Eng. J., 8, 103 (2001).CrossRefGoogle Scholar
  16. 16.
    H. Salehizadeh and M. C. M. van Loosdrecht, Biotechnol. Adv., 22, 261 (2004).CrossRefGoogle Scholar
  17. 17.
    Y.W. Lee, Y. J. Yoo and J.W. Yang, Korean J. Chem. Eng., 12, 481 (1995).CrossRefGoogle Scholar
  18. 18.
    V. Riis and W. Mai, J. Chromatogr., 445, 285 (1988).CrossRefGoogle Scholar
  19. 19.
    S. T. Wu, C. C. Huang, S. T. Yu and J. R. Too, J. Chin. Inst. Chem. Engrs., 37, 501 (2006).Google Scholar
  20. 20.
    J. S. Kim, B. H. Lee and B. S. Kim, Biochem. Eng. J., 23, 169 (2005).CrossRefGoogle Scholar
  21. 21.
    H. Preusting, W. Hazenberg and B. Witholt, Enzyme Microbiol. Technol., 15, 311 (1993).CrossRefGoogle Scholar
  22. 22.
    S. T. Yu, C. C. Lin and J. R. Too, Process Biochem., 40, 2729 (2005).CrossRefGoogle Scholar
  23. 23.
    Q. Yan, G. C. Du and J. Chen, Chin. J. Process Eng., 2, 483 (2002) (in Chinese).Google Scholar
  24. 24.
    K. S. Yim, S.Y. Lee and H. N. Chang, Biotechnol. Bioeng., 49, 495 (1996).CrossRefGoogle Scholar
  25. 25.
    W. Q. Ruan, J. Chen and S. Y. Lun, Process Biochem., 39, 295 (2003).CrossRefGoogle Scholar
  26. 26.
    Y. Doi, Microbial polyesters, VCH: New York (1990).Google Scholar
  27. 27.
    E.Y. Lee, S. H. Kang and C.Y. Choi, J. Ferment. Bioeng., 79, 328 (1995).CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Department of Bioindustry TechnologyDa-Yeh UniversityChang-HuaTaiwan, ROC

Personalised recommendations