Advertisement

Korean Journal of Chemical Engineering

, Volume 26, Issue 1, pp 153–155 | Cite as

Preparation of colloidal silver nanoparticles by chemical reduction method

  • Ki Chang Song
  • Sung Min Lee
  • Tae Sun Park
  • Bum Suk LeeEmail author
Biotechnology

Abstract

Colloidal silver nanoparticles were obtained by chemical reduction of silver nitrate in water with sodium borohydride (NaBH4) in the presence of sodium dodecyl sulfate (SDS) as a stabilizer. The obtained nanoparticles were characterized by their UV-vis absorption spectra and transmission electron micrograph (TEM) images. The UV-vis absorption spectra showed that NaBH4 served not only as a reducing agent but also as a stabilizer, which protects the aggregation of silver nanoparticles. The TEM images showed that the particles were dispersed better with increasing the NaBH4 concentration.

Key words

Silver Nanoparticles Chemical Reduction SDS UV-vis Absorption Spectra TEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Carotenuto, G. P. Pepe and L. Nicolais, Eur. Phys. J. B, 16, 11 (2000).CrossRefGoogle Scholar
  2. 2.
    E. Stathatos and P. Lianos, Langmuir, 16, 2398 (2000).CrossRefGoogle Scholar
  3. 3.
    S.V. Kyriacou, W. J. Brownlow and X. N. Xu, Biochemistry, 43, 140 (2004).CrossRefGoogle Scholar
  4. 4.
    X. Feng, H. Ma, S. Huang, W. Pan, X. Zhang, F. Tian, C. Cao, Y. Cheng and J. Luo, J. Phys. Chem. B., 110, 12311 (2006).Google Scholar
  5. 5.
    S. Choi, K. S. Kim, S. H. Yeon, J. H. Cha, H. Lee, C. J. Kim and I. D. Yoo, Korean J. Chem. Eng., 24, 856 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Kawashita, S. Tsuneyama, F. Mijaji, T. Kokubo, H. Kozuka and K. Yamamoto, Biomaterials, 21, 393 (2000).CrossRefGoogle Scholar
  7. 7.
    J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez and M. J. Yacaman, Nanotechnology, 16, 2346 (2005).CrossRefGoogle Scholar
  8. 8.
    K. S. Chou, Y. C. Lu and H. H. Lee, Mater. Chem. Phys., 94, 429 (2005).CrossRefGoogle Scholar
  9. 9.
    W. C. Lin and M. C. Yang, Macromol. Rapid. Commun., 26, 1942 (2005).CrossRefGoogle Scholar
  10. 10.
    H. S. Shin, H. J. Yang, S. B. Kim and M. S. Lee, J. Colloid Interf. Sci., 274, 89 (2004).CrossRefGoogle Scholar
  11. 11.
    K. D. Kim, D. N. Han and H. T. Kim, Chem. Engin. J., 104, 55 (2004).CrossRefGoogle Scholar
  12. 12.
    S. Kapoor, Langmuir, 14, 1021 (1998).CrossRefGoogle Scholar
  13. 13.
    G. A. Ozin, Adv. Mater., 4, 612 (1992).CrossRefGoogle Scholar
  14. 14.
    B. G. Ershov and A. Henglein, J. Phys. Chem., 97, 3434 (1993).CrossRefGoogle Scholar
  15. 15.
    J. P. Chen and L. L. Lim, Chemosphere, 49, 363 (2002).CrossRefGoogle Scholar
  16. 16.
    D. L. V. Hyning and C. F. Zukoski, Langmuir, 14, 7034 (1998).CrossRefGoogle Scholar
  17. 17.
    J. Liu, J. B. Lee, D. H. Kim and Y. Kim, Colloids Surf. A, 302, 276 (2007).CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Ki Chang Song
    • 1
  • Sung Min Lee
    • 1
  • Tae Sun Park
    • 1
  • Bum Suk Lee
    • 2
    Email author
  1. 1.Department of Chemical and Biochemical EngineeringKonyang UniversityChungnamKorea
  2. 2.Korea Institute of Energy ResearchDaejeonKorea

Personalised recommendations