Advertisement

Korean Journal of Chemical Engineering

, Volume 26, Issue 1, pp 48–56 | Cite as

Kinetic study and hydrogen peroxide consumption of phenolic compounds oxidation by Fenton’s reagent

  • Ana de Luis
  • José Ignacio Lombraña
  • Fernando Varona
  • Amaia Menéndez
Catalysis, Reaction Engineering, Industrial Chemistry

Abstract

Synthetic solutions of phenol, o-, m- and p-cresol were oxidised by using Fenton’s reagent. The application of substoichiometric dosage of H2O2 led to the formation of intermediate compounds, continuing later the oxidation to complete oxidation. An important objective was to analyze the effect of hydrogen peroxide dosage applied and the reaction pH together with the iron oxidation state on the degradation level. A kinetic model was derived from a reaction mechanism postulated which was used to analyze the results of the experiments. Another aim was to analyze the hydrogen peroxide consumption. Noteworthy results include an increase in oxidant consumption to intensify phenol removal. Furthermore, oxidant consumption was analyzed through the ratio H2O2 to phenol removed and the average specific rate of removal (ASRR). By analyzing these two parameters it has been possible to ascertain the most favorable strategy for an efficient application of H2O2.

Key words

Fenton Phenol Cresols Hydrogen Peroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Ko, C. Fan, P. Neng Chiang, M. Wang and K. Chuan, J. Hazard. Mater., 149, 275 (2007).CrossRefGoogle Scholar
  2. 2.
    V. Sklyar, A. Epov, M. Gladchenko, D. Danilovich and S. Kalyuzhnyi, Appl. Biochem. Biotech., 109, 253 (2003).CrossRefGoogle Scholar
  3. 3.
    S. Esplugas, J. Gimenez, S. Contreras, E. Pascual and M. Rodriguez, Water Res., 36, 1034 (2002).CrossRefGoogle Scholar
  4. 4.
    Y. O. Kim, H.U. Nam, Y. R. Park, J. H. Lee, T. J. Park and T. H. Lee, Korean J. Chem. Eng., 21, 801 (2004).CrossRefGoogle Scholar
  5. 5.
    L. Rao and S. Kanmani, Indian J. of Environ. Prot., 26, 619 (2006).Google Scholar
  6. 6.
    D. L. Sedlak and A.W. Andren, Environ. Sci. Technol., 25, 777 (1991).CrossRefGoogle Scholar
  7. 7.
    J. J. Pignatello, Environ. Sci. Technol., 26, 944 (1992).CrossRefGoogle Scholar
  8. 8.
    D. F. Bishop, G. Stern, M. Fleischman and L. S. Marshall, Ind. Eng. Chem. Process Design Dev., 7, 110 (1968).CrossRefGoogle Scholar
  9. 9.
    G.V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 17, 513 (1988).Google Scholar
  10. 10.
    R. H. Carvalho, F. Lemos, M.A. N. D. A. Lemos, V. Vojinovic, L. P. Fonseca and J. M. S. Cabral, Bioprocess Biosyst. Eng., 29, 99 (2006).CrossRefGoogle Scholar
  11. 11.
    N. Kang, D. Lee and J. Yoon, Chemosphere, 47, 915 (2002).CrossRefGoogle Scholar
  12. 12.
    S. Lunak and P. Sedlak, J. of Photoch. Photobio. A, 68, 1 (1992).CrossRefGoogle Scholar
  13. 13.
    J. A. Zazo, J.A. Casas, C. B. Molina, A. Quintanilla and J. J. Rodriguez, Environ. Sci. Technol., 41, 7164 (2007).CrossRefGoogle Scholar
  14. 14.
    S. H. Hong, B. H. Kwon, J. K. Lee and I. K. Kim, Korean J. Chem. Eng., 25, 46 (2008).CrossRefGoogle Scholar
  15. 15.
    I. M. Kolthoff and A. I. Medalia, J. Am. Chem. Soc., 71, 3777 (1949).CrossRefGoogle Scholar
  16. 16.
    M. Pera-Titus, V. García Molina, M. Baños, J. Giménez and S. Esplugas, Appl. Catal. B-Environ., 47, 219 (2004).CrossRefGoogle Scholar
  17. 17.
    Y. Yavuz, A. S. Koparal and U. B. Ogutveren, Chem. Eng. Technol., 30, 583 (2007).CrossRefGoogle Scholar
  18. 18.
    J. Sanz, J. I. Lombraña, A. De Luis, M. Ortueta and F. Varona, Environ. Chem. Lett., 1, 45 (2003).CrossRefGoogle Scholar
  19. 19.
    G. M. Eisenberg, Ind. Eng. Chem., 15, 327 (1942).Google Scholar
  20. 20.
    S. Guittonneau, J. de Laat, M. Dore, J. P. Duguet and C. Bonnel, Environ. Technol. Lett., 9, 1115 (1988).CrossRefGoogle Scholar
  21. 21.
    W. J. Masschelein, M. Denis and R. Lendent, Water and Sewage Works, 8, 69 (1977).Google Scholar
  22. 22.
    P. Striolo, H. Debelle and J. N. Foussard, Tribune de l’eau., 556, (1992).Google Scholar
  23. 23.
    M. Anbar, D. Meyerstein and P. Neta, J. Phys. Chem. A, 70, 2660(1966).Google Scholar
  24. 24.
    I.Y. Litvintsev, A. I. Mikhailyuk and V. N. Sapunov, Kinet. Catal., 36, 482 (1995).Google Scholar
  25. 25.
    F. J. Benitez, J. Beltran-Heredia, T. Gonzalez and F. Real, Ind. Eng. Chem. Res., 34, 4099 (1995).CrossRefGoogle Scholar
  26. 26.
    A. de Luis, J. I. Lombraña and A. Menéndez, J. Adv. Oxid. Technol., 11, 21 (2008).Google Scholar
  27. 27.
    Y.G. Montaser, G. Hartel, R. Mayer and R. Haseneder, Waste Manage., 21, 41 (2001).CrossRefGoogle Scholar
  28. 28.
    V. Kavitha and K. Palanivelu, Chemosphere, 55, 1235 (2004).CrossRefGoogle Scholar
  29. 29.
    F. Martínez, G. Calleja, J.A. Melero and R. Molina, Appl. Catal. BEnviron., 70, 452 (2007).CrossRefGoogle Scholar
  30. 30.
    V. Kavitha and K. Palanivelu, Water Res., 39, 3062 (2005).CrossRefGoogle Scholar
  31. 31.
    K. de Asin, Binay K. Dutta and S. Bhattacharjee, Environ. Prog., 25, 64 (2006).CrossRefGoogle Scholar
  32. 32.
    J. Nicell and H. Wright, Enzyme Microb. Technol., 21, 302 (1997).CrossRefGoogle Scholar
  33. 33.
    W. H Glaze, Y. Lay and J.W. Kang, Ind. Eng. Chem. Res., 34, 2314(1995).CrossRefGoogle Scholar
  34. 34.
    N. Karpel and M. Dore, Wat. Res., 31, 1383 (1997).CrossRefGoogle Scholar
  35. 35.
    J. I. Lombraña, F. Varona, C. Martínez and A. de Luis, Recent Res. Devel. In Chemical Engg., 1, 41 (1997).Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Ana de Luis
    • 1
  • José Ignacio Lombraña
    • 2
  • Fernando Varona
    • 2
  • Amaia Menéndez
    • 1
  1. 1.Department of Chemical Engineering and EnvironmentUniversity of the Basque CountryBilbaoSpain
  2. 2.Department of Chemical EngineeringUniversity of the Basque CountryBilbaoSpain

Personalised recommendations