Advertisement

Korean Journal of Chemical Engineering

, Volume 25, Issue 5, pp 1060–1064 | Cite as

Removal of Basic Blue 3 from aqueous solution by Corynebacterium glutamicum biomass: Biosorption and precipitation mechanisms

  • Juan Mao
  • Sung Wook Won
  • Jiho Min
  • Yeoung-Sang YunEmail author
Biotechnology

Abstract

The waste biomass generated from mono sodium glutamate fermentation process, Corynebacterium glutamicum, was evaluated as a biosorbent for the removal of Basic Blue 3 (BB 3), as a model cationic dye, from aqueous solution. A series of batch experiments to study pH edge, precipitation of dye, isotherms and kinetics were undertaken. The solution pH was found to be an important factor in biosorption of BB 3. With increasing the pH, the uptake of BB 3 increased, except at a pH below 2. At pH values below 2, the precipitation of BB 3 occurred rather than biosorption, which resulted in overestimation of the sorption performance. The sorption process could reach quickly to equilibrium after 1 min. The Langmuir and Freundlich models were used to fit the experimental data at different pH conditions. Between them, the Langmuir model described the experimental data very well with high correlation coefficients. Furthermore, C. glutamicum was easily eluted by shifting the solution pH, making repeated sorption/desorption cycle (up to 4 times) possible without significant performance decrease.

Key words

Biosorption Basic Blue 3 pH Effect Precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Aksu and S. Tezer, Process Biochem., 40, 1347 (2005).CrossRefGoogle Scholar
  2. 2.
    P. Nigam, G. Armour, I. M. Banat, D. Singht and R. Marchant, Bioresour. Technol., 72, 219 (2000).CrossRefGoogle Scholar
  3. 3.
    Y. Fu and T. Viraraghavan, Bioresour. Technol., 79, 251 (2001).CrossRefGoogle Scholar
  4. 4.
    K. K. H. Choy, J. F. Porter and G. McKay, Langmuir, 20, 9646 (2004).CrossRefGoogle Scholar
  5. 5.
    G. McKay, M. S. Otterburn and A. G. Sweeney, Water Res., 15, 327 (1981).CrossRefGoogle Scholar
  6. 6.
    R. Reid, J. Soc. Dyers Colour., 112, 103 (1996).Google Scholar
  7. 7.
    Y. Al-Degs, M. A. M. Khraisheh, S. J. Allen and M. N. A. Ahmad, Sep. Sci. Technol., 36, 91 (2001).CrossRefGoogle Scholar
  8. 8.
    Y. Guo, S. Yang, W. Fu, J. Qi, R. Li, Z. Wang and H. Xu, Dyes Pigm., 56, 219 (2003).CrossRefGoogle Scholar
  9. 9.
    P. K. Malik, Dyes Pigm., 56, 239 (2003).CrossRefGoogle Scholar
  10. 10.
    H. Métivier-Pignon, C. Faur-Brasquet and P. L. Cloirec, Sep. Purif. Technol., 31, 3 (2003).CrossRefGoogle Scholar
  11. 11.
    R.-L. Tseng, F.-C. Wu and R.-S. Juang, Carbon, 41, 487 (2003).CrossRefGoogle Scholar
  12. 12.
    T. Robinson, G. McMullan, R. Marchant and P. Nigan, Bioresour. Technol., 77, 247 (2001).CrossRefGoogle Scholar
  13. 13.
    G. Laufenberg, B. Kunz and M. Nystroem, Bioresour. Technol., 87, 167 (2003).CrossRefGoogle Scholar
  14. 14.
    T. Robinson, B. Chandran and P. Nigan, Water Res., 36, 2824 (2002).CrossRefGoogle Scholar
  15. 15.
    C. Namasivayam, R. Radhika and S. Suba, Waste Manage., 21, 381 (2001).CrossRefGoogle Scholar
  16. 16.
    T. Robinson, B. Chandran and P. Nigam, Bioresour. Technol., 85, 119 (2002).CrossRefGoogle Scholar
  17. 17.
    K. R. Ramakrishna and T. Viraraghavan, Water Sci. Technol., 36, 189 (1997).CrossRefGoogle Scholar
  18. 18.
    I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).CrossRefGoogle Scholar
  19. 19.
    H. Freundlich, Z. Phys. Chem., 57, 385 (1907).Google Scholar
  20. 20.
    P. Waranusantigul, P. Pokethitiyook, M. Kruatrachue and E. S. Upatham, Environ. Pollut., 125, 385 (2003).CrossRefGoogle Scholar
  21. 21.
    S.W. Won, S. B. Choi, B.W. Chung, D. Park, J. M. Park and Y.-S. Yun, Ind. Eng. Chem. Res., 43, 7865 (2004).CrossRefGoogle Scholar
  22. 22.
    S. W. Won, S. B. Choi and Y.-S. Yun, Colloid. Surf. A, 262, 175 (2005).CrossRefGoogle Scholar
  23. 23.
    R. M. Gong, Y. B. Jin, J. Chen, Y. Hu and J. Sun, Dyes Pigm., 73, 332 (2007).CrossRefGoogle Scholar
  24. 24.
    O. Gulnaz, A. Kaya, F. Matyar and B. Arikan, J. Hazard. Mater., 108, 183 (2004).CrossRefGoogle Scholar
  25. 25.
    V. K. Garg, R. Gupta, A. B. Yadav and R. Kumar, Bioresour. Technol., 89, 121 (2003).CrossRefGoogle Scholar
  26. 26.
    Z. Aksu and G. Dönmez, Chemosphere, 50, 1075 (2003).CrossRefGoogle Scholar
  27. 27.
    T. A. Davis, B. Volesky and A. Mucci, Water Res., 37, 4311 (2003).CrossRefGoogle Scholar
  28. 28.
    S. T. Ong, C. K. Lee and Z. Zainal, Bioresour. Technol., 98, 2792 (2007).CrossRefGoogle Scholar
  29. 29.
    S. E. Abdel-Aal, Y. H. Gad and A. M. Dessouki, J. Hazard. Mater., 129, 204 (2006).CrossRefGoogle Scholar
  30. 30.
    J. A. Stephen, G. Quan, M. Ronan and A. J. Pauline, J. Colloid Interf. Sci., 286, 101 (2005).CrossRefGoogle Scholar
  31. 31.
    M. Iqbal and R. G. J. Edyvean, Miner. Eng., 17, 217 (2004).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Juan Mao
    • 1
  • Sung Wook Won
    • 2
  • Jiho Min
    • 1
    • 2
  • Yeoung-Sang Yun
    • 1
    • 2
    Email author
  1. 1.Department of Bioprocess EngineeringChonbuk National UniversityJeonbukKorea
  2. 2.Division of Environmental and Chemical Engineering and Research Institute of Industrial TechnologyChonbuk National UniversityJeonbukKorea

Personalised recommendations