Korean Journal of Chemical Engineering

, Volume 25, Issue 4, pp 808–811 | Cite as

Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract

  • Jae Yong Song
  • Beom Soo KimEmail author
Biotechnology Short Communication


Persimmon (Diopyros kaki) leaf extract was used for the synthesis of bimetallic Au/Ag nanoparticles. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Persimmon leaf extract leads to the formation of bimetallic Au/Ag nanoparticles. UV-visible spectroscopy was monitored as a function of reaction time to follow the formation of Au/Ag nanoparticles. The synthesized bimetallic Au/Ag nanoparticles were characterized with energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). SEM images showed that large Au/Ag particles of 50–500 nm were formed with some cubic structure, while pure Ag particles obtained by reduction of only Ag+ ion were smaller with diameter of 15–90 nm and predominantly spherical. The atomic Ag contents of the bimetallic Au/Ag nanoparticles from EDS and XPS analysis were 36 and 71 wt%, respectively, suggesting that bimetallic Au core/Ag shell structure was formed by competitive reduction of Au3+ and Ag+ ions with Persimmon leaf extract.

Key words

Biological Synthesis Nanoparticles Plant Extract Diopyros kaki Bimetallic Gold/Silver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roadmap report on nanoparticles, W&W Espana s.l., Barcelona, Spain (2005).Google Scholar
  2. 2.
    J. H. Cha, K. S. Kim, S. Choi, S. H. Yeon, H. Lee, C. S. Lee and J. J. Shim, Korean J. Chem. Eng., 24, 1089 (2007).CrossRefGoogle Scholar
  3. 3.
    S. Choi, K. S. Kim, S. H. Yeon, J. H. Cha, H. Lee, C. J. Kim and I. D. Yoo, Korean J. Chem. Eng., 24, 856 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. T. Yu and P. Mulvaney, Korean J. Chem. Eng., 20, 1176 (2003).CrossRefGoogle Scholar
  5. 5.
    J. H. Fendler, Korean J. Chem. Eng., 18, 1 (2001).CrossRefGoogle Scholar
  6. 6.
    J. N. Yoo, Proceedings of KIChE Meetings (2006).Google Scholar
  7. 7.
    D. R. Bhumkar, H. M. Joshi, M. Sastry and V. B. Pokharkar, Pharm. Res., 24, 1415 (2007).CrossRefGoogle Scholar
  8. 8.
    T. Klaus, R. Joerger, E. Olsson and C.-G. Granqvist, Proc. Natl. Acad. Sci. USA, 96, 13611 (1999).CrossRefGoogle Scholar
  9. 9.
    Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi and T. Uruga, J. Biotechnol., 128, 648 (2007).CrossRefGoogle Scholar
  10. 10.
    B. Nair and T. Pradeep, Cryst. Growth Des., 2, 293 (2002).CrossRefGoogle Scholar
  11. 11.
    I. Willner, R. Baron and B. Willner, Adv. Mater., 18, 1109 (2006).CrossRefGoogle Scholar
  12. 12.
    S. S. Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interf. Sci., 275, 496 (2004).CrossRefGoogle Scholar
  13. 13.
    J.Y. Song and B. S. Kim, Proceedings of KIChE Meetings (2007).Google Scholar
  14. 14.
    A. Rai, M. Chaudhary, A. Ahmad, S. Bhargava and M. Sastry, Mater. Res. Bull., 42, 1212 (2007).CrossRefGoogle Scholar
  15. 15.
    S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry, Biotechnol. Prog., 22, 577 (2006).CrossRefGoogle Scholar
  16. 16.
    P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar and M. Sastri, Chem. Bio. Chem., 5, 461 (2002).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringChungbuk National UniversityCheongju, ChungbukKorea

Personalised recommendations