Advertisement

Korean Journal of Chemical Engineering

, Volume 25, Issue 4, pp 714–720 | Cite as

The relationship between disinfection by-products formation and characteristics of natural organic matter in raw water

  • Chul-Woo JungEmail author
  • Hee-Jong Son
Energy and Environmental Engineering

Abstract

The influence of the characteristics of natural organic matter (NOM) on disinfection by-product formation was investigated for Maeri raw water, located in downstream of Nakdong river and Hoedong reservoir at Busan in Korea. The NOM was chlorinated and analyzed for trihalomethanes (THMs), 5 haloacetic acids (HAA-5) and total organic halide (TOX). Aromatic contents determined by specific UV absorbance at 254 nm (SUVA) correlated well with THMs, HAA-5 and TOX formation for the NOM in the Maeri raw water and Hoedong reservoir. Especially, THMFP/DOC showed better correlation with SUVA than HAAFP-5/DOC and TOXFP/DOC with SUVA. Chloroform formation showed good correlation with SUVA for Maeri raw water, but poor correlation with SUVA for the Hoedong raw water. In addition, TCAA formation potential showed good correlation with SUVA for both raw waters. In contrast, a lack of correlation was observed for DCAA formation for both raw waters. THM formation per unit DOC concentration was 70.2–81.1% and 18.9–29.8% for hydrophobic and hydrophilic organic matter in the Maeri raw water, respectively, in which the hydrophobic organic matter had much higher THM formation. In contrast, HAA-5 formation per unit DOC concentration varied seasonally for Maeri raw water. THM formation in the Maeri raw water had a good correlations with SUVA regardless of the ratio of hydrophobic and hydrophilic fraction, and THM formation per unit DOC concentration was higher for the order of humic acid>fulvic acid>hydrophilic organic matter. HAA-5 formation per unit DOC concentration for the hydrophilic organic matter was about 30 μg per mg DOC regardless of SUVA values, but HAA-5 formation per unit DOC concentration for the hydrophobic organic matter was proportionally increased with increasing SUVA values. However, the HAA-5 formation per mg DOC was the highest for the hydrophilic organic matter.

Key words

NOM SUVA Hydrophilic/Hydrophobic DBPs THMs HAAs TOX 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.W. LeChevallier, W. Schulz and R.G. Lee, Environ. Microbiol., 57, 857 (1991).Google Scholar
  2. 2.
    M. C. White, J. D. Thompson, G.W. Harrington and P. C. Singer, J. AWWA, 89, 64 (1997).Google Scholar
  3. 3.
    H. Zou, J. Zhang and Z. Wang, Biomed Environ. Sci., 17, 299 (2004).Google Scholar
  4. 4.
    J. J. Rook, Water Treat. Exam., 23, 234 (1974).Google Scholar
  5. 5.
    G. F. Craun, R. J. Bull, R. M. Clark, J. Doull, W. Grabow, G. M. Marsh, D. A. Okun, S. Regli, M. D. Sobsey and J. M. Symons, Water Supply: Research & Technology-Aqua, 43, 192 (2001).Google Scholar
  6. 6.
    W. Lu and Z. Xiao-jian, Biomed Environ Sci., 18(1), 37 (2005).Google Scholar
  7. 7.
    S.W. Krasner Chemistry of disinfection by-product formation, Singer, P. C. Ed., American Water Works Association, Denver (1999).Google Scholar
  8. 8.
    K. J. Lee, B. H. Kim, J. E. Hong, H. S. Pyo, S. J. Park and D. W. Lee, Water Research, 35, 2861 (2001).CrossRefGoogle Scholar
  9. 9.
    G. L. Amy, J. Debroux, S. Sinha, P. Brandhuber and J. Cho, Occurrence of disinfection by-products precursors in source water and DBPs in finished waters, Proceedings of the Fourth International Workshop on Drinking Water Quality Management and Treatment Technology (1986).Google Scholar
  10. 10.
    U. Muller, Water Supply, 16, 121 (1998).Google Scholar
  11. 11.
    C.Y. Chang, U.H. Hsieh, Y. M. Lin, P.Y. Hu, C. C. Liu and K. H. Wang, Chemosphere, 44, 1153 (2001).CrossRefGoogle Scholar
  12. 12.
    B. Martin, J. P. Croue, E. Lefebvre and B. Legube, Water Res., 31, 541 (1997).CrossRefGoogle Scholar
  13. 13.
    C. Pelekani, G. Newcombe, V. L. Snoeyink, C. Hepplewhite, S. Assemi and R. Beckett, Environ. Sci. Technol., 33, 2807 (1999).CrossRefGoogle Scholar
  14. 14.
    T. K. Nissinen, I. T. Miettinen, P. J. Martikainen and T. Vartiainen, Chemosphere, 45, 865 (2001).CrossRefGoogle Scholar
  15. 15.
    D. M. Owen, W. J. Brennan and Z. K. Chowdhury, Practical implications of enhanced coagulation, Proceedings of AWWA Water Quality Technology Conference, Miami (1993).Google Scholar
  16. 16.
    J. P. Croue, J. F. Debroux, G. L. Amy, G. R. Aiken and J. A. Leenheer, Natural organic matter: Structural characteristics and reactive properties, Singer, P. C. Ed., Water. American Water Works Association, Denver (1999).Google Scholar
  17. 17.
    E. H. Goslan, D. A. Fearing, J. Banks, D. Wilson, P. Hills, A. T. Campbell and S. A. Parsons, Water Supply: Research & Technology-Aqua, 51, 475 (2002).Google Scholar
  18. 18.
    P. C. Singer, Water Sci. Technol., 40, 25, (1999).CrossRefGoogle Scholar
  19. 19.
    S.W. Krasner, J. P. Croue, J. Buffle and E. M. Perdue, J. AWWA, 88, 66 (1996).Google Scholar
  20. 20.
    H. J Son, J. S. Roh, E. J. Park, Y. D. Hwang, P. S. Sin, L. S. Kang and G. J. Joo, J. Korean Society of Environ. Eng., 24, 2075 (2002).Google Scholar
  21. 21.
    D. J. Barker and D. C. Stuckey, Water Res., 33, 3063 (1999).CrossRefGoogle Scholar
  22. 22.
    J. Link, E. Gilbert and S. H. Eberle, Vom Wasser, 72, 349 (1989).Google Scholar
  23. 23.
    E. M. Thurman and R. L. Malcolm, Environ. Sci. Technol., 15, 463 (1981).CrossRefGoogle Scholar
  24. 24.
    U.S.EPA, National Exposure Research Laboratory, Office of Research and Development, Method 552.2., Cincinnati, Ohio (1995).Google Scholar
  25. 25.
    A. D. Eaton and L. S. Clesceri, Standard Methods for the Examination of Water and Wastewater, Greenberg, A. E., Eds American Water Works Association, 19th Edition (1995).Google Scholar
  26. 26.
    J. P. Croue, D. Violleau and L. Labouyrie, Disinfection by-product formation potentials of hydrophobic and hydrophilic natural organic matter fractions, Barrett, S. E., Krasner, S.W., Amy, G. L. Eds., American Chemical Society, Washington, DC (2000).Google Scholar
  27. 27.
    D. A. Reckhow, P. C. Singer and R. L. Malcolm, Environ. Sci. Technol., 24, 1655 (1990).CrossRefGoogle Scholar
  28. 28.
    R. L. Malcolm and P. MacCarthy, Envir. Intl., 18, 597 (1992).CrossRefGoogle Scholar
  29. 29.
    H. H. Yeh and W. Huang, Water Sci. Technol., 27, 71 (1993).Google Scholar
  30. 30.
    D. A. Reckhow, J. E. Tobiason, W. Pouvesle, J. N. McClellan and J. K. Edzwald, Evolution of natural organic matter through a drinking water distribution system, Natural Organic Matter Workshop (1994).Google Scholar
  31. 31.
    K. M. Agbekodo, P. M. Huck, S.A. Andrews and S. Peidzsus, Influence of treated pulp mill effluent characteristics on DBP formation in downstream during water treatment plants, In: Proceedings of Natural Organic Matters Conference, France, 421 (1996).Google Scholar
  32. 32.
    X. Xu, H. Zou and J. Zhang, Water Res., 31, 1021 (1997).CrossRefGoogle Scholar
  33. 33.
    C. N. Chang, Y. S. Ma, G. C. Fang and F. F. Zing, Water Supply: Research & Technology-Aqua, 49, 269 (2000).Google Scholar
  34. 34.
    J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii and K. Mopper, Environ. Sci. Technol., 37, 4702 (2003).CrossRefGoogle Scholar
  35. 35.
    J. P. Croue, E. Lefebvre, B. Martin and B. Legube, Water Sci. Technol., 27, 143 (1993).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Ulsan Regional Innovation AgencyUlsan Industry Promotion Techno ParkUlsanKorea
  2. 2.Water Quality Research InstituteBusan Water AuthorityGimhae, GyeongnamKorea

Personalised recommendations