Advertisement

Korean Journal of Chemical Engineering

, Volume 25, Issue 4, pp 670–674 | Cite as

Optimization of biodiesel production from trap grease via acid catalysis

  • Zhong-Ming Wang
  • Jin-Suk LeeEmail author
  • Ji-Yeon Park
  • Chuang-Zhi Wu
  • Zhen-Hong Yuan
Catalysis, Reaction Engineering, Industrial Chemistry

Abstract

As a kind of waste collected from restaurants, trap grease is a chemically challenging feedstock for biodiesel production for its high free fatty acid (FFA) content. A central composite design was used to evaluate the effect of methanol quantity, acid concentration and reaction time on the synthesis of biodiesel from the trap grease with 50% free fatty acid, while the reaction temperature was selected at 95 °C. Using response surface methodology, a quadratic polynomial equation was obtained for ester content by multiple regression analysis. Verification experiments confirmed the validity of the predicted model. To achieve the highest ester content of crude biodiesel (89.67%), the critical values of the three variables were 35.00 (methanol-to-oil molar ratio), 11.27 wt% (catalyst concentration based on trap grease) and 4.59 h (reaction time). The crude biodiesel could be purified by a second distillation to meet the requirement of biodiesel specification of Korea.

Key words

Biodiesel Trap Grease Acid Catalysis Central Composite Design Response Surface Methodology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Van Gerpen, B. Shanks, R. Pruszko, D. Clements and G. Knothe, Biodiesel production technology, Report NREL/SR-510-36244 (2003).Google Scholar
  2. 2.
    G. Wiltsee, Urban waste grease resource treatment, Report NREL/ SR-50-26141 (1998).Google Scholar
  3. 3.
    F. Ma, L. D. Clemens and M. A. Hanna, Transactions of the ASAE, 41, 1261 (1998).Google Scholar
  4. 4.
    M. Canakci and J. Van Gerpen, Transactions of the ASAE, 46(4), 945 (2003).Google Scholar
  5. 5.
    B. Freedman, E. H. Pryde and T. L. Mounts, JAOCS, 61, 1638 (1984).CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, M. A. Dube, D. D. McLean and M. Kates, Bioresource Technology, 89, 1 (2003).CrossRefGoogle Scholar
  7. 7.
    M. J. Goff, N. S. Bauer, S. Lopes, W. R. Sutterlin and G. J. Suppes, JAOCS, 81, 415 (2004).CrossRefGoogle Scholar
  8. 8.
    M. Canakci and J. Van Gerpen, Transactions of the ASAE, 42(5), 1203 (1999).Google Scholar
  9. 9.
    S. Zheng, M. Katesb, M. A. Dube and D. D. McLean, Biomass and Bioenergy, 30, 267 (2006).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Zhong-Ming Wang
    • 2
    • 3
  • Jin-Suk Lee
    • 1
    Email author
  • Ji-Yeon Park
    • 1
  • Chuang-Zhi Wu
    • 2
  • Zhen-Hong Yuan
    • 2
  1. 1.Korea Institute of Energy ResearchDaejeonKorea
  2. 2.Guangzhou Institute of Energy ConversionCASGuangzhouChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations