Advertisement

Effect of biobased and biodegradable nucleating agent on the isothermal crystallization of poly(lactic acid)

  • Kyung Su Kang
  • Sang Il Lee
  • Tae Jin Lee
  • Ramani Narayan
  • Boo Young ShinEmail author
Materials (Organic, Inorganic, Electronic, Thin Films), Polymer, Fluidization, Particle Technology

Abstract

The effect of chemically modified thermoplastic starch (CMPS) on the thermal properties and isothermal crystallization kinetics of poly(lactic acid) (PLA) was studied by differential scanning calorimetry (DSC) and compared to that of granular starch and an inorganic nucleating agent, talc. Nucleated PLA showed an additional crystallization of PLA, which affected the melting temperature. The crystallinity and crystallization rate of PLA were considerably enhanced by addition of CMPS, even at 0.1% content, and the amount of the CMPS had little effect on the thermal properties and isothermal crystallization kinetics of PLA. The effect of CMPS as a nucleating agent was comparable to that of granular starch but slightly less than that of talc. However, CMPS can offer a fully biodegradable nucleating agent with no residues remaining for the biobased and biodegradable polymers.

Key words

Poly(lactic acid) Nucleating Agent Isothermal Crystallization Chemically Modified Thermoplastic Starch 

References

  1. 1.
    R. Narayan, Polymeric materials from agricultural feedstocks, Polymers from Agricultural Coproducts, M. L. Fishman, R. B. Friedman and S. J. Huang, Eds., ACS, Washington DC (1994).Google Scholar
  2. 2.
    R. Narayan, R., Rationale, drivers, and technology examples, Biobased & Biodegradable Polymer Materials, K. C. Khemmani and C. Scholz, Eds., ACS, Washington DC (2006).Google Scholar
  3. 3.
    S. Jacobsen and H. G. Fritz, Polym. Eng. Sci., 36, 2799 (1996).CrossRefGoogle Scholar
  4. 4.
    J.W. Park and S. S. Im, Polym. Eng. Sci., 40, 2539 (2000).CrossRefGoogle Scholar
  5. 5.
    T. Ke and X. Sun, J. Appl. Polym. Sci., 81, 3069 (2001).CrossRefGoogle Scholar
  6. 6.
    H. X. Sun and P. Seib, J. Appl. Polym. Sci., 82, 1761 (2001).CrossRefGoogle Scholar
  7. 7.
    H. Wang, X. Sun and P. Seib, J. Appl. Polym. Sci., 84, 1257 (2002).CrossRefGoogle Scholar
  8. 8.
    T. Ke and X. Sun, J. Appl. Polym. Sci., 88, 2947 (2003).CrossRefGoogle Scholar
  9. 9.
    B.W. Jung, C. H. Shin, Y. J. Kim and B.Y. Shin, Environmental Research (Korea), 18, 43 (1998).Google Scholar
  10. 10.
    H. Wang, X. Sun and P. Seib, J. Appl. Polym. Sci., 90, 3683 (2003).CrossRefGoogle Scholar
  11. 11.
    J. F. Zhang and X. Sun, J. Appl. Polym. Sci., 94, 1697 (2004).CrossRefGoogle Scholar
  12. 12.
    J. F. Zhang and X. Sun, Biomacromolecules, 5, 1446 (2004).CrossRefGoogle Scholar
  13. 13.
    S. B. Shin, G. S. Jo, K. S. Kang, T. J. Lee and B. S. Kim, Macromol. Res., 15, 291 (2007).Google Scholar
  14. 14.
    Y. J. Kim, Y. M. Lee and H. M. Lee, Korean J. Chem. Eng., 11, 172 (1994).CrossRefGoogle Scholar
  15. 15.
    H. S. Byhn and H.Y. Lee, Korean J. Chem. Eng., 23, 1003 (2006).CrossRefGoogle Scholar
  16. 16.
    J.Y. Park, M.H. Kwon and Y. S. Lee, Korean J. Chem. Eng., 17, 262 (2000).CrossRefGoogle Scholar
  17. 17.
    Y. C. Kim, C. Y. Kim and S. C. Kim, Polym. Eng. Sci., 31, 1009 (1991).CrossRefGoogle Scholar
  18. 18.
    W. Xu and P. He, J. Appl. Polym. Sci., 80, 304 (2001).CrossRefGoogle Scholar
  19. 19.
    H. Alata, B. Hexig and Y. Inoue, J. Polym. Sci. Part B: Polym. Phys., 44, 1813 (2006).CrossRefGoogle Scholar
  20. 20.
    N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara and E. Tobita, J. Appl. Polym. Sci., 103, 198 (2007).CrossRefGoogle Scholar
  21. 21.
    Y. He and Y. Inoue, J. Polym. Sci. Part B: Polym. Phys., 42, 3462 (2001).Google Scholar
  22. 22.
    K. Shin, T. Dong, Y. He, Y. Tagichi, A. Oishi, H. Nishida and Y. Inoue, Macromol. Biosci., 4, 1075 (2004).CrossRefGoogle Scholar
  23. 23.
    T. Dong, Y. He, K. Shin and Y. Inoue, Macromol. Biosci., 4, 1084 (2004).CrossRefGoogle Scholar
  24. 24.
    T. Dong, Y. He, B. Zhu, K. Shin and Y. Inoue, Macromolecules, 38, 7736 (2005).CrossRefGoogle Scholar
  25. 25.
    T. Ke and X. Sun, J. Appl. Polym. Sci., 89, 1203 (2003).CrossRefGoogle Scholar
  26. 26.
    R. Narayan, S. Blakrishnan, Y. Nabar, B.Y. Shin, P. Dubois and J. M. Raquez, US patent, 7, 153354 (2006).Google Scholar
  27. 27.
    D. W. Van Krevelene, Properties of polymers, Elsevier Science Publisher, Amsterdam (1990).Google Scholar
  28. 28.
    S. H. Park, Y. B. Kim and D. S. Lee, Polymer (Korea), 24, 477 (2000).Google Scholar
  29. 29.
    W. J. Liu, H. L. Yang, Z. Wang, L. S. Dong and J. J. Liu, J. Appl. Polym. Sci., 86, 2145 (2002).CrossRefGoogle Scholar
  30. 30.
    W. Kai, Y. He and Y. Inoue, Polym. Int., 54, 780 (2005).CrossRefGoogle Scholar
  31. 31.
    J. Yang, T. Zhao, L. Liu, Y. Zhou, G. Li, E. Zhou and X. Chen, Polym. J., 38, 1251 (2006).CrossRefGoogle Scholar
  32. 32.
    Y. He, Z. Chongyong, J. Wei and S. Li, Polym. Eng. Sci., 46, 1583 (2006).CrossRefGoogle Scholar
  33. 33.
    C. Y. Kim, Y. C. Kim and S. C. Kim, Polym. Eng. Sci., 33, 1445 (1993).CrossRefGoogle Scholar
  34. 34.
    T. Miyata and T. Masuko, Polymer, 39, 5515 (1998).CrossRefGoogle Scholar
  35. 35.
    X. Gao, R. Liu, M. Jin and H. Bu, J. Polym. Sci. Part B: Polym. Phys., 40, 2387 (2002).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Kyung Su Kang
    • 1
  • Sang Il Lee
    • 1
    • 2
  • Tae Jin Lee
    • 1
  • Ramani Narayan
    • 1
    • 3
  • Boo Young Shin
    • 1
    Email author
  1. 1.School of Chemical Engineering and TechnologyYeungnam UniversityGyeoungsanKorea
  2. 2.Channel DM Co., Ltd.SeoulKorea
  3. 3.Department of Chemical Engineering & Material ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations