Advertisement

Korean Journal of Chemical Engineering

, Volume 25, Issue 2, pp 253–258 | Cite as

Removal characteristics of metal cations and their mixtures using micellar-enhanced ultrafiltration

  • Hojeong Kim
  • Kitae Baek
  • Bo-Kyong Kim
  • Hyun-Jae Shin
  • Ji-Won YangEmail author
Energy and Environmental Engineering

Abstract

Divalent ions were removed by ultrafiltration of anionic surfactant solution and the removal characteristics in single and mixed systems were investigated. The removal efficiency was >95% when the ratio of sodium dodecyl sulfate (SDS) to metal ions (S/M ratio) was >10. In single metal systems, the removal efficiency of each metal ion was almost the same. In the mixture, however, there was slight difference (ca. 1–2%) of removal efficiency and the order was Cd2+>Cu2+>Co2+≈Zn2+. As S/M ratio increased, the difference in removal efficiency diminished. To explain the difference of removal efficiency in a mixture, complexation of divalent metal ion with counterion was considered. The distribution of complexed form of each metal ion was calculated, but it did not coincide with the experimental results. Further research will be necessary for a clear explanation.

Key words

Heavy Metal Micelle Sodium Dodecyl Sulfate (SDS) Ultrafiltration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Tchobanoglous and F. L. Burton, Wastewater engineering: treatment, disposal, and reuse, 3 ed., Metcalf & Eddy Inc., New York (1991).Google Scholar
  2. 2.
    J. F. Scamehorn, S. D. Christian, D. A. Elsayed, H. Uchiyama and S. S. Younis, Sep. Sci. Technol., 29, 809 (1994).CrossRefGoogle Scholar
  3. 3.
    S. J. Park, H. H. Yoon and S. K. Song, Korean J. Chem. Eng., 14, 233 (1997).CrossRefGoogle Scholar
  4. 4.
    K. Baek, H. H. Lee, H. J. Cho and J. W. Yang, Korean J. Chem. Eng., 20, 698 (2003).CrossRefGoogle Scholar
  5. 5.
    K. Baek, B. K. Kim, H. J. Cho and J. W. Yang, J. Hazard. Mater., 99, 303 (2003).CrossRefGoogle Scholar
  6. 6.
    K. Baek, B. K. Kim and J. W. Yang, Fresenius Environmental Bulletin, 13, 105 (2004).Google Scholar
  7. 7.
    K. Baek, B. K. Kim and J. W. Yang, Desalination, 156, 137 (2003).CrossRefGoogle Scholar
  8. 8.
    K. Baek, H. H. Lee and J. W. Yang, Desalination, 158, 157 (2003).CrossRefGoogle Scholar
  9. 9.
    K. Baek and J. W. Yang, J. Hazard. Mater., 108, 119 (2004).CrossRefGoogle Scholar
  10. 10.
    K. Baek and J. W. Yang, Desalination, 167, 101 (2004).CrossRefGoogle Scholar
  11. 11.
    K. Baek and J. W. Yang, Desalination, 167, 111 (2004).CrossRefGoogle Scholar
  12. 12.
    K. Baek and J. W. Yang, Chemosphere, 57, 1091 (2004).CrossRefGoogle Scholar
  13. 13.
    J. J. Hong, S. M. Yang, C. H. Lee, Y. K. Choi and T. Kajiuchi, J. Colloid Interfac. Sci., 202, 63 (1998).CrossRefGoogle Scholar
  14. 14.
    R. S. Juang, Y. Y. Xu and C. L. Chen, J. Membrane Sci., 218, 257 (2003).CrossRefGoogle Scholar
  15. 15.
    S. Tangvijitsri, C. Saiwan, C. Soponvuttikul and J. F. Scamehorn, Sep. Sci. Technol., 37, 993 (2002).CrossRefGoogle Scholar
  16. 16.
    H. S. Yang, K. H. Han, D. W. Kang and Y. H. Kim, Korean J. Chem. Eng., 13, 448 (1996).CrossRefGoogle Scholar
  17. 17.
    H. S. Yang, K. H. Han, D. W. Kang, M. J. Song and Y. H. Kim, HWAHAK KONGHAK, 34, 482 (1996).Google Scholar
  18. 18.
    P. Zhou, H. Yan and B. H. Gu, Chemosphere, 58, 1327 (2005).CrossRefGoogle Scholar
  19. 19.
    K. Baek, J. S. Yang, T. S. Kwon and J. W. Yang, Desalination, 206, 245 (2007).CrossRefGoogle Scholar
  20. 20.
    K. Baek and J. W. Yang, Sep. Sci. Technol., 40, 699 (2005).CrossRefGoogle Scholar
  21. 21.
    J. Iqbal, H. J. Kim, J. S. Yang, K. Baek and J.W. Yang, Chemosphere, 66, 970 (2007).CrossRefGoogle Scholar
  22. 22.
    H. J. Kim, K. Baek, B. K. Kim and J. W. Yang, J. Hazard. Mater., 122, 31 (2005).CrossRefGoogle Scholar
  23. 23.
    J. Lee, J. S. Yang, H. J. Kim, K. Baek and J. W. Yang, Desalination, 184, 395 (2005).CrossRefGoogle Scholar
  24. 24.
    J. S. Yang, K. Baek and J. W. Yang, Desalination, 184, 385 (2005).CrossRefGoogle Scholar
  25. 25.
    J. F. Scamehorn and J.H. Harwell, Surfactant-based separation processes, Marcel Dekker Inc., New York (1989).Google Scholar
  26. 26.
    A. Paulenova, P. Rajec, M. Jezikova and J. Kucera, J. Radioanal. Nucl. Ch., 208, 145 (1996).CrossRefGoogle Scholar
  27. 27.
    Z. Sadaoui, C. Azoug, G. Charbit and F. Charbit, J. Environ. Eng. A, 124, 695 (1998).CrossRefGoogle Scholar
  28. 28.
    M. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers, Dordrecht (1996).Google Scholar
  29. 29.
    R. O. Dunn, J. F. Scamehorn and S. D. Christian, Sep. Sci. Technol., 20, 257 (1985).CrossRefGoogle Scholar
  30. 30.
    J. F. Shackelford, Introduction to materials science for engineers, 4 ed., Prentice hall international, Inc., New Jersey (1992).Google Scholar
  31. 31.
    W. Stumm, Aquatic chemical kinetics: Reaction rates of process in natural waters, John Wiley & Sons, New Work (1990).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Hojeong Kim
    • 1
  • Kitae Baek
    • 2
  • Bo-Kyong Kim
    • 1
  • Hyun-Jae Shin
    • 3
  • Ji-Won Yang
    • 1
    Email author
  1. 1.National Research Laboratory for Environmental Remediation, Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Department of Environmental EngineeringKumoh National Institute of TechnologyGyeongbukKorea
  3. 3.Department of Chemical & Biochemical EngineeringChosun UniversityGwangjuKorea

Personalised recommendations