Korean Journal of Chemical Engineering

, Volume 25, Issue 1, pp 59–63 | Cite as

A semi-empirical model for the air oxidation kinetics of UO2

  • Byung Heung ParkEmail author
  • Chung-Seok Seo
Catalysis, Reaction Engineering, Industrial Chemistry


UO2 is readily oxidized to U3O8 at a high temperature, and this reaction has received considerable attention in the field of nuclear fuel cycles. A voloxidation process which makes use of the characteristics of a UO2 oxidation has been developed to treat the spent fuels produced by irradiation of UO2. In this work, semi-empirical kinetic models to describe the sigmoidal behavior of a UO2 oxidation were selected and compared in order to obtain a kinetic expression with different temperatures. Two basic approaches of a nucleation-and-growth model and an autocatalytic reaction model were adequate enough to describe the S-shaped oxidation behavior, and an equation to correlate the model parameters with the temperature was introduced. The calculation results of the two models satisfy the experimental data for UO2 spheres and the activation energy of a reaction rate constant was evaluated. The models were also adopted as a surface reaction time term for a UO2 pellet.

Key words

UO2 Oxidation Kinetics Model Voloxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.G. Boase and T. T. Vandergraaf, Nucl. Technol., 32, 60 (1977).Google Scholar
  2. 2.
    J.-W. Choi, R. J. McEachern, P. Talyor and D. D. Wood, J. Nucl. Mater., 230, 250 (1996).CrossRefGoogle Scholar
  3. 3.
    G.-S. You, K.-S. Kim, D.-K. Kim and S.-G. Ro, J. Nucl. Mater., 277, 325 (2000).CrossRefGoogle Scholar
  4. 4.
    E. L. Nicholson, ORNL Report, ORNL/CF-76/65, Oak Ridge National Laboratory, Oak Ridge, U.S.A. (1976).Google Scholar
  5. 5.
    W. S. Groenier, ORNL Report, ORNL/CF-77/67, Oak Ridge National Laboratory, Oak Ridge, U.S.A. (1977).Google Scholar
  6. 6.
    G. Uchiyama, M. Kitamura, K. Yamazaki, S. Torikai, S. Sugikawa, M. Maeda and T. Tsujino, Radioactive Waste Management and the Nuclear Fuel Cycle, 17, 63 (1992).Google Scholar
  7. 7.
    S. M. Jeong, S.-B. Park, S.-S. Hong, C.-S. Seo and S.-W. Park, J. Radioanal. Nucl. Chem., 268, 349 (2006).CrossRefGoogle Scholar
  8. 8.
    S. B. Park, B. H. Park, S. M. Jeong, J. M. Hur, C.-S. Seo, S.-H. Choi and S.W. Park, J. Radioanal. Nucl. Chem., 268, 489 (2006).CrossRefGoogle Scholar
  9. 9.
    B. H. Park, S. B. Park, S. M. Jeong, C.-S. Seo and S.-W. Park, J. Radioanal. Nucl. Chem., 270, 575 (2006).CrossRefGoogle Scholar
  10. 10.
    K. A. Peakallr and J. E. Antill, J. Nucl. Mater., 2, 194 (1960).CrossRefGoogle Scholar
  11. 11.
    K. T. Harrison, C. Padgett and K. T. Scott, J. Nucl. Mater., 23, 121 (1967).CrossRefGoogle Scholar
  12. 12.
    H. Ohashi, E. Noda and T. Morozumi, J. Nucl. Sci. Technol., 11, 445 (1974).Google Scholar
  13. 13.
    R. J. McEachern, J. Nucl. Mater., 245, 238 (1997).CrossRefGoogle Scholar
  14. 14.
    R. J. McEachern and P. Taylor, J. Nucl. Mater., 254, 87 (1998).CrossRefGoogle Scholar
  15. 15.
    S. M. Jeong, K.-C. Kwon, B. H. Park and C.-S. Seo, React. Kinet. Catal. Lett., 89, 269 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Suemitsu, H. Togashi and T. Abe, Thin Solid Films, 428, 83 (2003).CrossRefGoogle Scholar
  17. 17.
    M. Quintas, T. R. S. Brandão and C. L. M. Silva, J. Food Eng., 78, 537 (2007).CrossRefGoogle Scholar
  18. 18.
    K. H. Kang, S.H. Na, K. C. Song, S. H. Lee and S.W. Kim, Thermochim. Acta, 455, 129 (2007).CrossRefGoogle Scholar
  19. 19.
    O. Levenspiel, Chemical reaction engineering, 2nd ed., Wiley, New York (1972).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Korea Atomic Energy Research InstituteYuseong, DaejeonKorea

Personalised recommendations