Korean Journal of Chemical Engineering

, Volume 25, Issue 1, pp 41–45

Effect of Al2O3-ZrO2 xerogel support on hydrogen production by steam reforming of LNG over Ni/Al2O3-ZrO2 catalyst

  • Jeong Gil Seo
  • Min Hye Youn
  • Kyung Min Cho
  • Sunyoung Park
  • Sang Hee Lee
  • Joohyung Lee
  • In Kyu Song
Catalysis, Reaction Engineering, Industrial Chemistry


An Al2O3-ZrO2 xerogel (AZ-SG) was prepared by a sol-gel method for use as a support for a nickel catalyst. The Ni/AZ-SG catalyst was then prepared by an impregnation method, and was applied to hydrogen production by steam reforming of LNG. A nickel catalyst supported on commercial alumina (A-C) was also prepared (Ni/A-C) for comparison. The hydroxyl-rich surface of the AZ-SG support increased the dispersion of nickel species on the support during the calcination step. The formation of a surface nickel aluminate-like phase in the Ni/AZ-SG catalyst greatly enhanced the reducibility of the Ni/AZ-SG catalyst. The ZrO2 in the AZ-SG support increased the adsorption of steam onto the support and the subsequent spillover of steam from the support to the active nickel sites in the Ni/AZ-SG catalyst. Both the high surface area and the well-developed mesoporosity of the Ni/AZ-SG catalyst improved the gasification of adsorbed surface hydrocarbons in the reaction. In the steam reforming of LNG, the Ni/AZ-SG catalyst showed a better catalytic performance than the Ni/A-C catalyst. Moreover, the Ni/AZ-SG catalyst showed strong resistance toward catalyst deactivation.

Key words

Al2O3-ZrO2 Xerogel Sol-gel Supported Nickel Catalyst Steam Reforming LNG Hydrogen Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Moon, J.W. Ryu, S. D. Lee and B. S. Ahn, Korean J. Chem. Eng., 19, 921 (2002).CrossRefGoogle Scholar
  2. 2.
    B.-G. Park, Korean J. Chem. Eng., 21, 782 (2004).CrossRefGoogle Scholar
  3. 3.
    Q. Ming, T. Healey, L. Allen and P. Irving, Catal. Today, 77, 51 (2002).CrossRefGoogle Scholar
  4. 4.
    K. H. Kim, S.Y. Lee and K. J. Yoon, Korean J. Chem. Eng., 23, 356 (2006).CrossRefGoogle Scholar
  5. 5.
    J. K. Lee and D. Park, Korean J. Chem. Eng., 15, 658 (1998).CrossRefGoogle Scholar
  6. 6.
    S.W. Nam, S. P. Yoon, H.Y. Ha, S.-A. Hong and A. P. Maganyuk, Korean J. Chem. Eng., 17, 288 (2000).CrossRefGoogle Scholar
  7. 7.
    J. Zhang, Y. Wang, R. Ma and D. Wu, Korean J. Chem. Eng., 20, 288 (2003).CrossRefGoogle Scholar
  8. 8.
    A. Praharso, A. Adesina, D. L. Trimm and N.W. Cant, Korean J. Chem. Eng., 20, 468 (2003).CrossRefGoogle Scholar
  9. 9.
    E. Promaros, S. Assabumrungrat, N. Laosiripojana, P. Praserthdam, T. Takawa and S. Goto, Korean J. Chem. Eng., 24, 44 (2007).CrossRefGoogle Scholar
  10. 10.
    S. J. Kong, J. H. Jun and K. J. Yoon, Korean J. Chem. Eng., 21, 793 (2004).CrossRefGoogle Scholar
  11. 11.
    J. N. Armor, Appl. Catal. A, 176, 159 (1999).CrossRefGoogle Scholar
  12. 12.
    H.-S. Roh, K.-W. Jun and S.-E. Park, Appl. Catal. A, 251, 275 (2003).CrossRefGoogle Scholar
  13. 13.
    A. Vargas, C. Maldonado, J. A. Montoya, L. Norena and J. Morales, Appl. Catal. A, 273, 269 (2004).CrossRefGoogle Scholar
  14. 14.
    T. Borowiecki, A. Golebiowski and B. Stasinska, Appl. Catal. A, 153, 141 (1997).CrossRefGoogle Scholar
  15. 15.
    T. Borowiecki, G. Wojciech and D. Andrzej, Appl. Catal. A, 270, 27 (2004).CrossRefGoogle Scholar
  16. 16.
    J. S. Lisboa, D. C. R. M. Santos, F. B. Passos and F. B. Noronha, Catal. Today, 101, 15 (2005).CrossRefGoogle Scholar
  17. 17.
    S. Natesakhawat, R. B. Watson, X. Wang and U. S. Ozkan, J. Catal., 234, 496 (2005).CrossRefGoogle Scholar
  18. 18.
    H.-S. Roh, K.-W. Jun, W.-S. Dong, J.-S. Chang, S.-E. Park and Y.-I. Joe, J. Mol. Catal. A, 181, 137 (2002).CrossRefGoogle Scholar
  19. 19.
    J.G. Seo, M.H. Youn and I. K. Song, J. Mol. Catal. A, 268, 9 (2007).CrossRefGoogle Scholar
  20. 20.
    Y. Kim, P. Kim, C. Kim and J. Yi, Korean J. Chem. Eng., 22, 321 (2005).CrossRefGoogle Scholar
  21. 21.
    T.V. Choudhary, C. Sivadinarayana and D.W. Goodman, Chem. Eng. J., 93, 69 (2003).CrossRefGoogle Scholar
  22. 22.
    S. Tang, L. Ji, J. Lin, H. C. Zeng, K. L. Tan and K. Li, J. Catal., 194, 424 (2000).CrossRefGoogle Scholar
  23. 23.
    A. Valentini, N. L.V. Carreno, L. F. D. Probst, E. R. Leite and E. Longo, Micro. Meso. Mater., 68, 151 (2004).CrossRefGoogle Scholar
  24. 24.
    J.-H. Kim, D. J. Suh, T.-J. Park and K.-L. Kim, Appl. Catal. A, 197, 191 (2000).CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, G. Xiong, S. Sheng and W. Yang, Catal. Today, 63, 517 (2000).CrossRefGoogle Scholar
  26. 26.
    D. J. Suh, T.-J. Park, J.-H. Kim and K.-L. Kim, J. Non-Cryst. Solids, 225, 168 (1998).CrossRefGoogle Scholar
  27. 27.
    D. J. Suh, T.-J. Park, J.-H. Kim and K.-L. Kim, Chem. Mater., 9, 1903 (1997).CrossRefGoogle Scholar
  28. 28.
    P. Kim, Y. Kim, H. Kim, I. K. Song and J. Yi, Appl. Catal. A, 272, 157 (2004).CrossRefGoogle Scholar
  29. 29.
    A. Corma, V. Fornes, R.M. Aranda and F. Rey, J. Catal., 134, 58 (1992).CrossRefGoogle Scholar
  30. 30.
    J. A. Wang, A. Morales, X. Bokhimi and O. Novaro, Chem. Mater., 11, 308 (1999).CrossRefGoogle Scholar
  31. 31.
    M. L. Jacono, M. Schiavello and A. Cimino, J. Phys. Chem., 75, 1044 (1971).CrossRefGoogle Scholar
  32. 32.
    S. Narayanan and K. Uma, J. Chem. Soc. Faraday Trans., 81, 273 (1983).Google Scholar
  33. 33.
    A. N. Kharat, P. Pendleton, A. Badalyan, M. Abedini and M. M. Amini, J. Catal., 205, 7 (2002).CrossRefGoogle Scholar
  34. 34.
    Y. Matsumura and T. Nakamori, Appl. Catal. A, 258, 107 (2004).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Jeong Gil Seo
    • 1
  • Min Hye Youn
    • 1
  • Kyung Min Cho
    • 1
  • Sunyoung Park
    • 1
  • Sang Hee Lee
    • 1
  • Joohyung Lee
    • 1
  • In Kyu Song
    • 1
  1. 1.School of Chemical and Biological Engineering, Research Center for Energy Conversion and StorageSeoul National UniversitySeoulKorea

Personalised recommendations