Korean Journal of Chemical Engineering

, Volume 24, Issue 3, pp 397–402 | Cite as

Synthesis of nanocrystalline alumina by thermal decomposition of aluminum isopropoxide in 1-butanol and their applications as cobalt catalyst support

  • Kamonchanok Pansanga
  • Okorn Mekasuwandumrong
  • Jongjai Panpranot
  • Piyasan Praserthdam
Article

Abstract

Nanocrystalline alumina powders were prepared by thermal decomposition of aluminum isopropoxide (AIP) in 1-butanol at 300 °C for 2 h and employed as cobalt catalyst supports. The crystallization of alumina was found to be influenced by the concentration of AIP in the solution. At low AIP content, wrinkled sheets-link structure of γ-Al2O3 was formed, while at high AIP concentrations, fine spherical particles of χ-Al2O3 were obtained. It was found that using these fine particles alumina as cobalt catalyst supports resulted in much higher amounts of cobalt active sites measured by H2 chemisorption and higher CO hydrogenation activities.

Key words

Nanocrystalline Alumina Thermal Decomposition Cobalt Catalyst Solvothermal Method CO Hydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Church, N. W. Cant and D. L. Trimm, Appl. Catal. A, 101(1), 105 (1993).CrossRefGoogle Scholar
  2. 2.
    G. Pajonk and S. Teichner, Aerogels, Springer, Berlin (1986).Google Scholar
  3. 3.
    C. Misra, Industrial alumina chemicals, ACS Monograph 184, Washington (1986).Google Scholar
  4. 4.
    H. Topsoe, B. S. Clausen and F. E. Massoth, Hydrotreating catalysis, Springer, Berlin (1996).Google Scholar
  5. 5.
    C. J. Brinker and G. W. Scherrer, Sol-gel science, Academic Press, San Diego (1990).Google Scholar
  6. 6.
    K.-C. Song, K.-J. Woo and Y. Kang, Korean J. Chem. Eng., 16, 75 (1999).CrossRefGoogle Scholar
  7. 7.
    W. H. Dawson, Am. Ceram. Soc. Bull., 67, 1673 (1988).Google Scholar
  8. 8.
    S. G. Deng and Y. S. Lin, Sci. Lett., 16, 1291 (1997).CrossRefGoogle Scholar
  9. 9.
    Y. Sarikaya, I. Sevinc and M. Akinc, Powder Technol., 116(1), 109 (2001).CrossRefGoogle Scholar
  10. 10.
    S.-M. Oh and D.-W. Park, Korean J. Chem. Eng., 17, 299 (2000).CrossRefGoogle Scholar
  11. 11.
    M. Inoue, H. Kominami and T. Inui, J. Am. Ceram. Soc., 73, 1100 (1990).CrossRefGoogle Scholar
  12. 12.
    M. Inoue, H. Kominami and T. Inui, J. Chem. Soc. Dalton Trans., 3331 (1991).Google Scholar
  13. 13.
    M. Inoue, H. Kominami and T. Inui, T. J. Am. Ceram. Soc., 75, 2597 (1992).CrossRefGoogle Scholar
  14. 14.
    M. Inoue, H. Kominami and T. Inui, Appl. Catal. A, 97, L25 (1993).CrossRefGoogle Scholar
  15. 15.
    M. Inoue, H. Kominami and T. Inui, Appl. Catal. A, 121, L1 (1995).Google Scholar
  16. 16.
    M. Inoue, H. Kominami and T. Inui, J. Am. Ceram. Soc., 75, 2597 (1996a).CrossRefGoogle Scholar
  17. 17.
    M. Inoue, Y. Kondo and T. Inui, Inorg. Chem., 27, 215 (1988).CrossRefGoogle Scholar
  18. 18.
    M. Inoue, H. Otsu, H. Kominami and T. Inui, Ind. Eng. Chem. Res., 35, 295 (1996b).CrossRefGoogle Scholar
  19. 19.
    Y. Deng, G.-D. Wei and C.-W. Nan, Chem. Phys. Lett., 368(5–6), 639 (2003).CrossRefGoogle Scholar
  20. 20.
    Y. Deng, X.-S. Zhou, G.-D. Wei, J. Liu, C.-W. Nan and S.-J. Zhao, J. Phys. Chem. Solids, 63(11), 2119 (2002).CrossRefGoogle Scholar
  21. 21.
    N. Berntsen, T. Gutjahr, L. Loeffler, J. R. Gomm, R. Seshadri and W. Tremel, Chem. Mater., 15(23), 4498 (2003).CrossRefGoogle Scholar
  22. 22.
    C. Wang, Z.-X. Deng, G. Zhang, S. Fan and Y. Li, Powder Technol., 125(1), 39 (2002).CrossRefGoogle Scholar
  23. 23.
    O. Mekasuwandumrong, H. Kominami, P. Praserthdam and M. Inoue, J. Am. Ceram. Soc., 87(8), 1543 (2004a).CrossRefGoogle Scholar
  24. 24.
    O. Mekasuwandumrong, P. Praserthdam, M. Inoue, V. Pavarajam and W. Tanakulrungsank, J. Mater. Sci., 39, 2417 (2004b).CrossRefGoogle Scholar
  25. 25.
    O. Mekasuwandumrong, P. L. Silveston, P. Praserthdam, M. Inoue, V. Pavarajarn and W. Tanakulrungsank, Inorg. Chem. Commu., 6(7), 930 (2003).CrossRefGoogle Scholar
  26. 26.
    P. Praserthdam, M. Inoue, O. Mekasuvandumrong, W. Tanakulrungsank and S. Phatanasri, Inorg. Chem. Commu., 3(11), 671 (2000).CrossRefGoogle Scholar
  27. 27.
    M. Inoue, H. Otsu, H. Kominami and T. Inui, Ind. Eng. Chem. Res., 35, 295 (1996c).CrossRefGoogle Scholar
  28. 28.
    R. C. Reuel and C. H. Bartholomew, J. Catal., 85, 63 (1984).CrossRefGoogle Scholar
  29. 29.
    B. Jongsomjit, J. Panpranot and J. G. Goodwin Jr., J. Catal., 215(1), 66 (2003).CrossRefGoogle Scholar
  30. 30.
    R. B. Anderson, The Fischer-Tropsch synthesis, Academic Press, San Diego (1984).Google Scholar
  31. 31.
    Y. Zhang, D. Wei, S. Hammache and J. G. Goodwin Jr., J. Catal., 188(2), 281 (1999).CrossRefGoogle Scholar
  32. 32.
    B. Ernst, S. Libs, P. Chaumette and A. Kiennemann, Appl. Catal. A, 186(1–2), 145 (1999).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kamonchanok Pansanga
    • 1
  • Okorn Mekasuwandumrong
    • 2
  • Jongjai Panpranot
    • 1
  • Piyasan Praserthdam
    • 1
  1. 1.Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.Department of Chemical Engineering, Faculty of Engineering and Industrial TechnologySilpakorn UniversityNakorn PathomThailand

Personalised recommendations