Advertisement

Effect of a Submerged Porous Plate on the Hydroelastic Response of a Very Large Floating Structure

  • Harekrushna Behera
  • Trilochan Sahoo
  • Chiu-On Ng
Research Article
  • 14 Downloads

Abstract

Scattering of oblique flexural-gravity waves by a submerged porous plate in a finite water depth is investigated under the assumptions of linearized surface waves and small-amplitude structural response. The study is carried out using eigenfunction expansions and the corresponding orthogonal mode-coupling relations associated with flexural-gravity waves in uniform water depth. The characteristics of the roots of the complex dispersion relation are examined using the principle of counting argument and contour plot. Characteristics of the flexural-gravity waves are studied by assuming both the floating elastic plate and the submerged porous plate are infinitely extended in horizontal directions. The effectiveness of the submerged porous structure on the reflection, transmission, and dissipation coefficients is analyzed for various wave and structural parameters.

Keywords

Flexural-gravity wave Mode-coupling relation Dispersion relation Porous plate Reflection and transmission coefficients 

References

  1. Behera H, Ng CO (2017) Oblique wave scattering by a system of floating and submerged porous elastic plates. In: Proceedings of the 32nd International Workshop on Water Waves and Floating Bodies (IWWWFB32), Dalian, China, April 23–26Google Scholar
  2. Behera H, Sahoo T (2015) Hydroelastic analysis of gravity wave interaction with submerged horizontal flexible porous plate. J Fluids Struct 54:643–660.  https://doi.org/10.1016/j.jfluidstructs.2015.01.005 CrossRefGoogle Scholar
  3. Chakrabarti A, Ahluwalia D, Manam S (2003) Surface water waves involving a vertical barrier in the presence of an ice-cover. Int J Eng Sci 41:1145–1162.  https://doi.org/10.1016/S0020-7225(02)00375-0 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cheng Y, Zhai G, Ou J (2015) Numerical and experimental analysis of hydroelastic response on a very large floating structure edged with a pair of submerged horizontal plates. J Mar Sci Technol 20:127–141.  https://doi.org/10.1007/s00773-014-0269-y CrossRefGoogle Scholar
  5. Cheng Y, Ji C, Zhai G, Oleg G (2016) Dual inclined perforated anti-motion plates for mitigating hydroelastic response of a VLFS under wave action. Ocean Eng 121:572–591.  https://doi.org/10.1016/j.oceaneng.2016.05.044 CrossRefGoogle Scholar
  6. Cho I, Kim M (1998) Interactions of a horizontal flexible membrane with oblique incident waves. J Fluid Mech 367:139–161.  https://doi.org/10.1017/S0022112098001499 CrossRefzbMATHGoogle Scholar
  7. Cho I, Kim M (2000) Interactions of horizontal porous flexible membrane with waves. J Waterw Port Coast Ocean Eng 126:245–253.  https://doi.org/10.1061/(ASCE)0733-950X(2000)126:5(245) CrossRefGoogle Scholar
  8. Cho I, Kim M (2013) Transmission of oblique incident waves by a submerged horizontal porous plate. Ocean Eng 61:56–65.  https://doi.org/10.1016/j.oceaneng.2012.12.044 CrossRefGoogle Scholar
  9. Das D, Mandal B (2009) Wave scattering by a circular cylinder half-immersed in water with an ice-cover. Int J Eng Sci 47:463–474.  https://doi.org/10.1016/j.ijengsci.2008.10.001 MathSciNetCrossRefzbMATHGoogle Scholar
  10. Das S, Sahoo T (2017) Hydroelastic analysis of very large floating structure over viscoelastic bed. Meccanica 52:1871–1887.  https://doi.org/10.1007/s11012-016-0529-5 MathSciNetCrossRefzbMATHGoogle Scholar
  11. Das S, Behera H, Sahoo T (2016) Flexural gravity wave motion over poroelastic bed. Wave Motion 63:135–148.  https://doi.org/10.1016/j.wavemoti.2016.02.002 MathSciNetCrossRefGoogle Scholar
  12. Evans DV, Peter MA (2011) Asymptotic reflection of linear water waves by submerged horizontal porous plates. J Eng Math 69:135–154.  https://doi.org/10.1007/s10665-009-9355-2 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Fox C, Squire VA (1990) Reflection and transmission characteristics at the edge of shore fast sea ice. J Geophys Res Oceans 95:11629–11639.  https://doi.org/10.1029/JC095iC07p11629 CrossRefGoogle Scholar
  14. Fu S, Moan T, Chen X, Cui W (2007) Hydroelastic analysis of flexible floating interconnected structures. Ocean Eng 34:1516–1531.  https://doi.org/10.1016/j.oceaneng.2007.01.003 CrossRefGoogle Scholar
  15. Hassan ULM, Meylan MH, Peter M (2009) Water-wave scattering by submerged elastic plates. Q J Mech Appl Math 62:321–344.  https://doi.org/10.1093/qjmam/hbp008 MathSciNetCrossRefzbMATHGoogle Scholar
  16. Heins AE (1950) Water waves over a channel of finite depth with a submerged plane barrier. Can J Math 2:210–222.  https://doi.org/10.4153/CJM-1950-019-2 MathSciNetCrossRefzbMATHGoogle Scholar
  17. Hu HH, Wang KH (2005) Damping effect on waves propagating past a submerged horizontal plate and a vertical porous wall. J Eng Mech 131:427–437.  https://doi.org/10.1061/(ASCE)0733-9399(2005)131:4(427) CrossRefGoogle Scholar
  18. Ijima T, Ozaki S, Eguchi Y, Kobayashi A (1970) Breakwater and quay well by horizontal plates. Coast Eng 1970:1537–1556.  https://doi.org/10.1061/9780872620285.094 CrossRefGoogle Scholar
  19. Karmakar D, Bhattacharjee J, Sahoo T (2010) Oblique flexural gravity-wave scattering due to changes in bottom topography. J Eng Math 66:325–341.  https://doi.org/10.1007/s10665-009-9297-8 MathSciNetCrossRefzbMATHGoogle Scholar
  20. Koley S, Sahoo T (2017) Oblique wave scattering by horizontal floating flexible porous membrane. Meccanica 52:125–138.  https://doi.org/10.1007/s11012-016-0407-1 MathSciNetCrossRefGoogle Scholar
  21. Liu Y, Li YC (2011) An alternative analytical solution for water-wave motion over a submerged horizontal porous plate. J Eng Math 69:385–400.  https://doi.org/10.1007/s10665-010-9406-8 MathSciNetCrossRefzbMATHGoogle Scholar
  22. Liu Y, Li YC, Teng B (2007) Wave interaction with a perforated wall breakwater with a submerged horizontal porous plate. Ocean Eng 34:2364–2373.  https://doi.org/10.1016/j.oceaneng.2007.05.002 CrossRefGoogle Scholar
  23. Maiti P, Mandal B (2010) Wave scattering by a thin vertical barrier submerged beneath an ice-cover in deep water. Appl Ocean Res 32:367–373.  https://doi.org/10.1016/j.apor.2010.07.001 CrossRefGoogle Scholar
  24. Manam S, Kaligatla R (2011) Effect of a submerged vertical barrier on flexural gravity waves. Int J Eng Sci 49:755–767.  https://doi.org/10.1016/j.ijengsci.2011.03.015 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Mandal S, Sahoo T, Chakrabarti A (2017) Characteristics of eigen-systems for flexural gravity wave problems. Geophys Astrophys Fluid Dyn 111:249–281.  https://doi.org/10.1080/03091929.2017.1318129 MathSciNetCrossRefGoogle Scholar
  26. Meylan MH, Bennetts LG, Peter MA (2017) Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions. Wave Motion 70:240–250.  https://doi.org/10.1016/j.wavemoti.2016.06.014 MathSciNetCrossRefGoogle Scholar
  27. Mohanty S, Mondal R, Sahoo T (2014) Time dependent flexural gravity waves in the presence of current. J Fluids Struct 45:28–49.  https://doi.org/10.1016/j.jfluidstructs.2013.11.018 CrossRefGoogle Scholar
  28. Mohapatra S, Sahoo T (2014a) Wave interaction with a floating and submerged elastic plate system. J Eng Math 87:47–71.  https://doi.org/10.1007/s10665-013-9659-0 MathSciNetCrossRefzbMATHGoogle Scholar
  29. Mohapatra S, Sahoo T (2014b) Oblique wave diffraction by a flexible floating structure in the presence of a submerged flexible structure. Geophys Astrophys Fluid Dyn 108:615–638.  https://doi.org/10.1080/03091929.2014.937806 MathSciNetCrossRefGoogle Scholar
  30. Mondal R, Sahoo T (2012) Wave structure interaction problems for two-layer fluids in three dimensions. Wave Motion 49:501–524.  https://doi.org/10.1016/j.wavemoti.2012.02.002 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Mondal R, Sahoo T (2014) Wave structure interaction problems in three-layer fluid. Z Angew Math Phys 65:349–375.  https://doi.org/10.1007/s00033-013-0368-3 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Mondal R, Mohanty S, Sahoo T (2013) Expansion formulae for wave structure interaction problems in three dimensions. IMA J Appl Math 78:181–205.  https://doi.org/10.1093/imamat/hxr044 MathSciNetCrossRefzbMATHGoogle Scholar
  33. Ohta H, Torii T, Hayashi N, Watanabe E, Utsunomiya T, Sekita K, Sunahara S (1999) Effect of attachment of a horizontal/vertical plate on the wave response of a VLFS. Proceedings of the third International Workshop on Very Large Floating Structure, University of Hawaii at Manao Honolulu, HI. pp 256–274Google Scholar
  34. Squire VA (2011) Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Philos Trans R Soc Lond A 369:2813–2831.  https://doi.org/10.1098/rsta.2011.0093 MathSciNetCrossRefzbMATHGoogle Scholar
  35. Takagi K, Shimada K, Ikebuchi T (2000) An anti-motion device for a very large floating structure. Mar Struct 13:421–436.  https://doi.org/10.1016/S0951-8339(00)00018-6 CrossRefGoogle Scholar
  36. Tavana H, Khanjani M (2013) Reducing hydroelastic response of very large floating structure: a literature review. Int J Comput Appl 71:13–17.  https://doi.org/10.5120/12353-8658 Google Scholar
  37. Wang C, Tay Z (2011) Very large floating structures: applications, research and development. Procedia Eng 14:62–72.  https://doi.org/10.1016/j.proeng.2011.07.007 CrossRefGoogle Scholar
  38. Wang C, Tay Z, Takagi K, Utsunomiya T (2010) Literature review of methods for mitigating hydroelastic response of VLFS under wave action. Appl Mech Rev 63:030802.  https://doi.org/10.1115/1.4001690 CrossRefGoogle Scholar
  39. Watanabe E, Utsunomiya T, Kuramoto M, Ohta H, Torii T, Hayashi N et al (2003) Wave response analysis of VLFS with an attached submerged plate. Int J Offshore Polar Eng 13Google Scholar
  40. Williams T, Meylan MH (2012) The Wiener–Hopf and residue calculus solutions for a submerged semi-infinite elastic plate. J Eng Math 75:81–106.  https://doi.org/10.1007/s10665-011-9518-9 MathSciNetCrossRefzbMATHGoogle Scholar
  41. Yoon JS, Cho SP, Jiwinangun RG, Lee PS (2014) Hydroelastic analysis of floating plates with multiple hinge connections in regular waves. Mar Struct 36:65–87.  https://doi.org/10.1016/j.marstruc.2014.02.002 CrossRefGoogle Scholar
  42. Yu X (2002) Functional performance of a submerged and essentially horizontal plate for offshore wave control: a review. Coast Eng J 44:127–147.  https://doi.org/10.1142/S0578563402000470 CrossRefGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Harekrushna Behera
    • 1
  • Trilochan Sahoo
    • 2
  • Chiu-On Ng
    • 3
  1. 1.SRM Research Institute and Department of Mathematics, SRM Institute of Science and TechnologyKattankulathurIndia
  2. 2.Department of Ocean Engineering and Naval ArchitectureIndian Institute of TechnologyKharagpurIndia
  3. 3.Department of Mechanical EngineeringThe University of Hong KongPokfulamChina

Personalised recommendations