Advertisement

Journal of Marine Science and Application

, Volume 16, Issue 4, pp 395–404 | Cite as

Numerical simulation of the solitary wave interacting with an elastic structure using MPS-FEM coupled method

  • Chengping Rao
  • Youlin Zhang
  • Decheng Wan
Article

Abstract

Fluid-Structure Interaction (FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method (MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit (MPS) method is used to calculate the fluid domain, while the Finite Element Method (FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method.

Keywords

mesh-free method moving particle semi-implicit finite element method fluid-structure interaction solitary wave MLParticle-SJTU solver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliabadi SK, Tezduyar TE, 1993. Space-time finite element computation of compressible flows involving moving boundaries and interfaces. Computer Methods in Applied Mechanics and Engineering, 107(1–2), 209–223.CrossRefzbMATHGoogle Scholar
  2. Altomare C, Crespo AJ, Domínguez JM, Gómez-Gesteira M, Suzuki T, Verwaest T, 2015. Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96, 1–12. DOI:  10.1016/j.coastaleng.2014.11.001 CrossRefGoogle Scholar
  3. Antoci C, Gallati M, Sibilla S, 2007. Numerical simulation of fluid-structure interaction by SPH. Computers & Structures, 85(11–14), 879–890. DOI:  10.1016/j.compstruc.2007.01.002 CrossRefGoogle Scholar
  4. Betsy S, 2014. Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I: Flat Plate. Coastal Engineering, 88,194–209. DOI:  10.1016/j.coastaleng.2014.01.005 CrossRefGoogle Scholar
  5. Boussinesq J, 1872. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées, 17, 55–108. (in French)MathSciNetzbMATHGoogle Scholar
  6. Chen JKL, Noguchi H, Koshizuka S, 2007. Fluid-shell structure interaction analysis by coupled particle and finite element method. Computers & Structures, 85(11–14), 688–697. DOI:  10.1016/j.compstruc.2007.01.019 Google Scholar
  7. el Moctar O, Ley J, Oberhagemann J, Schellin T, 2017. Nonlinear computational methods for hydroelastic effects of ships in extreme seas. Ocean Engineering, 130, 659–673. DOI:  10.1016/j.oceaneng.2016.11.037 CrossRefGoogle Scholar
  8. Goring DG, 1978. Tsunamis-the propagation of long waves onto a shelf. PhD thesis, California Institute of Technology, Pasadena.Google Scholar
  9. Hirt CW, Nichols BD, 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225.CrossRefzbMATHGoogle Scholar
  10. Hou G, 2012. Numerical methods for fluid-structure interaction -a review. Communications in Computational Physics, 12(2), 337–377. DOI:  10.4208/cicp.291210.290411s MathSciNetCrossRefzbMATHGoogle Scholar
  11. Hsiao KM, Lin JY, Lin WY, 1999. A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams. Comput. Methods Appl. Mech. Engrg, 169, 1–18. DOI:  10.1016/S0045-7825(98)00152-2 CrossRefzbMATHGoogle Scholar
  12. Idelsohn SR, 2008. Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Eng., 197, 1762–1776. DOI:  10.1016/j.cma.2007.06.004 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Iura M, Atluri SN, 1995. Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames. Computers and Structures, 55(3), 453–462. DOI:  10.1016/0045-7949(95)98871-M CrossRefzbMATHGoogle Scholar
  14. Khayyer A, Gotoh H, 2013. Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios. Journal of Computational Physics, 242, 211–233. DOI:  10.1016/j.jcp.2013.02.002 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Khayyer A, Gotoh H, 2015. A multi-phase compressible-incompressible particle method for water slamming. Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference, Kona, Hawaii, USA, 1235–1240. DOI:  10.17736/ijope.2016.mk42 Google Scholar
  16. Khayyer A, Gotoh H, Shao SD, 2008. Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Engineering, 55(3), 236–250. DOI:  10.1016/j.coastaleng.2007.10.001 CrossRefGoogle Scholar
  17. Kondo M, Koshizuka S, 2011. Improvement of stability in moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 65(6), 638–654. DOI:  10.1002/fld.2207 MathSciNetCrossRefzbMATHGoogle Scholar
  18. Korteweg DJ, De Vries G, 1895. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39, 422–443. DOI:  10.1080/14786449508620739 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Koshizuka S, 1996. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science & Engineering the Journal of the American Nuclear Society, 123(3), 421–434.CrossRefGoogle Scholar
  20. Lee BH, Park JC, Kim MH, Hwang SC, 2011. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Computer Methods in Applied Mechanics & Engineering, 50(24), 5921–5933. DOI:  10.1016/j.cma.2010.12.001 zbMATHGoogle Scholar
  21. Liang DF, Jian W, Shao S, Chen R, Yang K, 2017. Incompressible SPH simulation of solitary wave interaction with movable seawalls. Journal of Fluids and Structures, 69, 72–88. DOI:  10.1016/j.jfluidstructs.2016.11.015 CrossRefGoogle Scholar
  22. Longatte E, Verremana V, Souli M, 2009. Time marching for simulation of fluid-structure interaction problems. Journal of Fluids and Structures, 25, 95–111. DOI:  10.1016/j.jfluidstructs.2008.03.009 CrossRefGoogle Scholar
  23. Lucy LB, 1977. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82, 1013–1024.CrossRefGoogle Scholar
  24. Newmark NM, 1959. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85(3), 67–94.Google Scholar
  25. Sriram V, Ma QW, 2012. Improved MLPG_R method for simulating 2D interaction between violent waves and elastic structures. Journal of Computational Physics, 231(22), 7650–7670. DOI:  10.1016/j.jcp.2012.07.003 MathSciNetCrossRefGoogle Scholar
  26. Stanley O, Fedkiw R, 2003. Level set methods and dynamic implicit surfaces. Springer, New York, 17–21. DOI:  10.1115/1.1760520 zbMATHGoogle Scholar
  27. Tanaka M, Masunaga T, 2010. Stabilization and smoothing of pressure in mps method by quasi-compressibility. Journal of Computational Physics, 229(11), 4279–4290. DOI:  10.1016/j.jcp.2010.02.011 CrossRefzbMATHGoogle Scholar
  28. Tang ZY, Wan DC, 2015. Numerical simulation of impinging jet flows by modified MPS method. Engineering Computations, 32(4), 1153–1171. DOI:  10.1108/EC-01-2015-0002 CrossRefGoogle Scholar
  29. Tang ZY, Zhang YL, Wan DC, 2016a. Multi-resolution MPS method for free surface flows. International Journal of Computational Methods, 13(4), 1641018-1–1641018-17. DOI:  10.1142/S0219876216410188 MathSciNetCrossRefzbMATHGoogle Scholar
  30. Tang ZY, Zhang YL, Wan DC, 2016b. Numerical simulation of 3-D free surface flows by overlapping MPS. Journal of Hydrodynamics, 28(2), 306–312. DOI:  10.1016/S1001-6058(16)60632-7 CrossRefGoogle Scholar
  31. Walhorn E, Kölke A, Hübner B, Dinkler D, 2005. Fluid-structure coupling within a monolithic model involving free surface flows. Computers & Structures, 83(25–26), 2100–2111. DOI:  10.1016/j.compstruc.2005.03.010 CrossRefGoogle Scholar
  32. Zhang YL, Tang ZY, Wan DC, 2016. Numerical investigations of waves interacting with free rolling body by modified MPS method. International Journal of Computational Methods, 13(4), 1641013-1–1641013-14. DOI:  10.1142/S0219876216410139 MathSciNetCrossRefzbMATHGoogle Scholar
  33. Zhang YL, Wan DC, 2017. Numerical study of interactions between waves and free rolling body by IMPS method. Computers & Fluids, 155, 124–133. DOI:  10.1016/j.compfluid.2017.03.019 MathSciNetCrossRefGoogle Scholar
  34. Zhang YX, Wan DC, 2011. Application of MPS in 3D dam breaking flows. Sci. Sin. Phys. Mech. Astron., 41, 140–154. DOI:  10.1360/132010-1195 CrossRefGoogle Scholar
  35. Zhang YX, Wan DC, 2012. Numerical simulation of liquid sloshing in low-filling tank by MPS. Chinese Journal of Hydrodynamics, 27(1), 100–107. (in Chinese) DOI:  10.3969/j.issn1000-4874.2012.01.015 Google Scholar
  36. Zhang YX, Wan DC, Hino T, 2014. Comparative study of MPS method and level-set method for sloshing flows. Journal of hydrodynamics, 26(4), 577–585. DOI:  10.1016/S1001-6058(14)60065-2 CrossRefGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong University, Collaborative Innovation Center for Advanced Ship and Deep-Sea ExplorationShanghaiChina

Personalised recommendations