Journal of Marine Science and Application

, Volume 16, Issue 3, pp 352–361 | Cite as

Impact of aromatic concentration in marine fuels on particle emissions

  • Maria Zetterdahl
  • Kent Salo
  • Erik Fridell
  • Jonas Sjöblom
Article

Abstract

The fuel sulfur content in marine fuels has been regulated in Sulfur Emission Control Areas (SECAs) since January 2015. However, other fuel characteristics are also believed to have an impact on particle emissions, particularly on the number of particles emitted. This study investigates the impact of the content of aromatics in fuel. To achieve fuel blends with concentrations of aromatics similar to those found in marine fuel oils, i.e. 20%–30% by volume (%vol.), normal diesel oil (4%–5% vol. aromatics) is doped with a mixture of aromatics. Emission measurements are conducted in test-bed engine facilities and particle emissions over a wide size range are analyzed. Results show a decreased number of particles emitted (or not change) with an increase in the aromatic concentration in fuel. This is because there is a reduction in the cetane number of the fuel with an increased aromatic content, which effects the combustion process and results in decreased particle formation. However, when ignition improver is used to increase the cetane number, particle emissions remain at a lower level than for normal diesel oil; thereby emphasizing the presence of other factors in the formation of particles.

Keywords

aromatics particle emission ship emission marine fuel SECA 

船用燃料中芳烃浓度对粒子排放的影响研究

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlvik P, Ntziachristos L, Keskinen J, Virtanen A, 1998. Real time measurements of diesel particle size distribution with an electrical low pressure impactor. SAE Technical Paper Series, 980410.CrossRefGoogle Scholar
  2. Anderson M, Salo K, Hallquist, ÅM, Fridell E, 2015. Characterization of particles from a marine engine operating at low loads. Atmospheric Environment, 101, 65–71. DOI: 10.1016/j.atmosenv.2014.11.009CrossRefGoogle Scholar
  3. Barone TL, Lall AA, Storey JME, Mulholland GW, Prikhodko VY, Frankland JH, Parks JE, Zachariah MR, 2011. Size-resolved density measurements of particle emissions from an advanced combustion diesel engine: effect of aggregate morphology. Energy & Fuels, 25(5), 1978–1988. DOI: 10.1021/ef200084kCrossRefGoogle Scholar
  4. Beecken J, 2015. Remote measurements of gas and particulate matter emissions from individual ships. PhD thesis, Chalmers University of Technology, Göteborg, Sweden.Google Scholar
  5. Boman J, 2009. Trace element analysis of urban aerosol particles using X-ray fluorescence spectrometry. Spectroscopy Europe, 21(6), 11–14.Google Scholar
  6. Brem BT, Durdina L, Siegerist F, Beyerle P, Bruderer K, Rindlisbacher T, Rocci-Denis S, Andac MG, Zelina J, Penanhoat O, Wang J, 2015. Effects of fuel aromatic content on nonvolatile particulate emissions of an in-production aircraft gas turbine. Environmental Science & Technology, 49(22), 13149–13157. DOI: 10.1021/acs.est.5b04167CrossRefGoogle Scholar
  7. Corbett JJ, Winebrake J, Green EH, Kasibhatla P, Eyring V, Lauer A, 2007. Mortality from ship emissions: a global assessment. Environmental Science & Technology, 41(24), 8512–8518.CrossRefGoogle Scholar
  8. Dekati, 2010. Dekati FPS-4000, Fine Particle Sampler. Tampere, FinlandGoogle Scholar
  9. Den Ouden CJJ, Clark RH, Cowley LT, Stradling RJ, Lange WW, Maillard C, 1994. Fuel quality effects on particulate matter emissions from Light-and heavy duty diesel engines. SAE Technical Paper Series, 942022.CrossRefGoogle Scholar
  10. Diesch JM, Drewnick F, Klimach T, Borrmann S, 2013. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany. Atmospheric Chemistry and Physics, 13(7), 3603–3618. DOI: 10.5194/acp-13-3603-2013CrossRefGoogle Scholar
  11. Fukuda M, Tree DR, Foster DE, Suhre BR, 1992. The effect of fuel aromatic structure and content on direct injection diesel engine particulates. SAE Technical Paper Series, 920110.Google Scholar
  12. Grimm Aerosol Technik GmbH & Co KG, 2010. Portable laser aerosol spectrometer and dust monitor model 1.108/1.109. Ainring, Germany.Google Scholar
  13. Hart H, Craine LE, Hart DJ, 1999. Organic Chemistry, a Short Course. Stratton R, Blodget N, Eds. 10th ed. Houghton Mifflin Company, USA.Google Scholar
  14. IMO, 2009. Revised MARPOL Annex VI and NOx Technical Code 2008: Regulations for the prevention of air pollution from ships.Google Scholar
  15. IMO, 2013. MARPOL Annex VI and NTC 2008 with guidelines for implementation 2013 edition. London, UK.Google Scholar
  16. Kasper A, Aufdenblatten S, Forss A, Mohr M, Burtscher H, 2007. Particulate emissions from a low-speed marine diesel engine. Aerosol Science and Technology, 41(1), 24–32. DOI: 10.1080/02786820601055392CrossRefGoogle Scholar
  17. Kidoguchi Y, Yang C, Kato R, Miwa K, 2000. Effects of fuel cetane number and aromatics on combustion process and emissions of a direct-injection diesel engine. JSAE Review, 21, 469–475.CrossRefGoogle Scholar
  18. Kittelson DB, 1998. Engines and nanoparticles: a review. Journal of Aerosol Science, 29(5-6), 575–588. DOI: 10.1016/s0021-8502(97)10037-4CrossRefGoogle Scholar
  19. Kivekäs N, Massling A, Grythe H, Lange R, Rusnak V, Carreno S, Skov H, Swietlicki E, Nguyen QT, Glasius M, Kristensson A, 2014. Contribution of ship traffic to aerosol particle concentrations downwind of major shipping lane. Atmospheric Chemistry and Physics, 14, 8255–8267. DOI: 10.5194/acp-14-8255-2014CrossRefGoogle Scholar
  20. Lack DA, Cappa CD, Langridge J, Bahreini R, Buffaloe G, Brock C, Cerully K, Coffman D, Hayden K, Holloway J, Lerner B, Massoli P, Li SM, McLaren R, Middlebrook AM, Moore R, Nenes A, Nuaaman I, Onasch TB, Peischl J, Perring A, Quinn PK, Ryerson T, Schwartz JP, Spackman R, Wofsy SC, Worsnop D, Xiang B, Williams E, 2011. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality. Environmental Science & Technology, 45(20), 9052–9060. DOI: 10.1021/es2013424CrossRefGoogle Scholar
  21. Lack DA, Corbett JJ, Onasch T, Lerner B, Massoli P, Quinn PK, Bates TS, Covert DS, Coffman D, Sierau B, Herndon S, Allan J, Baynard T, Lovejoy E, Ravishankara AR, Williams E, 2009. Particulate emissions from commercial shipping: Chemical, physical, and optical properties. Journal of Geophysical Research, 114, 2156–2202. DOI: 10.1029/2008jd011300CrossRefGoogle Scholar
  22. Ladommatos N, Rubenstein P, Bennett P, 1996. Some effects of molecular structure of single hydrocarbons on sooting tendency. Fuel, 75(2), 114–124.CrossRefGoogle Scholar
  23. Lee R, Pedley J, Hobbs C, 1998. Fuel quality impact on heavy duty diesel emissions: a literature review. SAE Technical Paper Series, 982649.Google Scholar
  24. Merico E, Donateo A, Gambaro A, Cesari D, Gregoris E, Barbaro E, Dinoi A, Giovanelli G, Masieri S, Contini D, 2016. Influence of in-port ships emissions to gaseous atmospheric pollutants and to particulate matter of different sizes in a Mediterranean harbour in Italy. Atmospheric Environment, 139, 1–10. DOI: 10.1016/j.atmosenv.2016.05.024CrossRefGoogle Scholar
  25. Miyamoto N, Ogawa H, Shibuya M, 1991. Distinguishing the effects of aromatic content and ignitability of fuels in diesel combustion and emissions. SAE Technical Paper Series, 912355.Google Scholar
  26. Neill SW, Chippior WL, Gülder ÖL, Cooley J, Richardson KE, Mitchell K, Fairbridge C, 2000. Influence of fuel aromatics type on the particulate matter and NOx emissions of a heavy-duty diesel engine. SAE Technical Paper Series, 2000-01-1856.Google Scholar
  27. Olfert JS, Symonds JPR, Collings N, 2007. The effective density and fractal dimension of particles emitted from a light-duty diesel vehicle with a diesel oxidation catalyst. Journal of Aerosol Science, 38, 69–82.CrossRefGoogle Scholar
  28. Park K, Cao F, Kittelson D, McMurry PH, 2003. Relationship between particle mass and mobility for diesel exhaust particles. Environmental Science & Technology, 37(3), 577–583.CrossRefGoogle Scholar
  29. Pettersson JBC, Kovacevik B, Wagner A, Boman J, Laursen J, 2011. Elemental composition of fine particulate matter (PM2.5) in Skopje, FYR of Macedonia. X-Ray Spectrometry, 40, 280–288.CrossRefGoogle Scholar
  30. Siebers DL, 1999. Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization. SAE Technical Paper Series, 1999-01-0528.CrossRefGoogle Scholar
  31. Sjöblom, J, 2015. Combined effects of late IVC and EGR on low-load diesel combustion. SAE Int. J. Engines, 8(1), 60–67. DOI: 10.4271/2014-01-2878CrossRefGoogle Scholar
  32. Stone R, 2012. Introduction to internal combustion engines. 4th ed. Palgrave Macmillan, England.CrossRefGoogle Scholar
  33. Svensson E, 2011. The regulation of global SOx emissions from ships. IMO Proceedings 1988-2008. (Licentiate of Philosophy), Chalmers University of Technology, Göteborg, Sweden, 11:127.Google Scholar
  34. Symonds JPR, Reavell KSJ, Olfert JS, Campell BW, Swift SJ, 2007. Diesel soot mass calculation in real-time with a differential mobility spectrometer. Journal of Aerosol Science, 38, 52–68.CrossRefGoogle Scholar
  35. Tan P-q, Zhao J-y, Hu Z-y, Lou D-m, Du A-m, Du D-m, 2013. Effects of fuel properties on exhaust emissions from diesel engines. Journal of Fuel Chemistry and Technology, 41(3), 347–355. DOI: 10.1016/s1872-5813(13)60021-3CrossRefGoogle Scholar
  36. Tree DR, Svensson KI, 2007. Soot processes in compression ignition engines. Progress in Energy and Combustion Science, 33(3), 272–309. DOI: 10.1016/j.pecs.2006.03.002CrossRefGoogle Scholar
  37. TSI, 2006. Model 3090 Engine Exhaust Particle Sizer Spectrometer, Operation and Service Manual, P/N 1980494, Revision E. Retrieved from USA.Google Scholar
  38. Tsurutani K, Takei Y, Fujimoto Y, Matsudaira J, Kumamoto M, 1995. The effects of fuel properties and oxygenates on diesel exhaust emissions. SAE Technical Paper Series, 952349.Google Scholar
  39. Vermeire MB, 2012. Everything you need to know about marine fuels. Retrieved from Chevron Global Marine Products, Belgium.Google Scholar
  40. Virtanen A, Ristimäki J, Marjamäki M, Vaaraslathi K, Keskinen J, 2002. Effective density of diesel exhaust particles as a function of size. SAE Technical Paper Series, 2002-01-0056.Google Scholar
  41. Zannis TC, Hountalas DT, Papagiannakis RG, Levendis YA, 2008. Effect of fuel chemical structure and properties on diesel engine performance and pollutant emissions: review of the results of four European research programs. SAE International Journal of Fuels and Lubricants, 1(1), 384–419.CrossRefGoogle Scholar
  42. Zhang T, Munch K, Denbratt I, 2015. An experimental study on the use of butanol or octanol blends in a heavy duty diesel engine. SAE International Journal of Fuels and Lubricants, 8(3), 610–621. DOI: 10.4271/2015-24-2491.CrossRefGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Maria Zetterdahl
    • 1
  • Kent Salo
    • 1
  • Erik Fridell
    • 1
    • 2
  • Jonas Sjöblom
    • 3
  1. 1.Department of Shipping and Marine TechnologyChalmers University of TechnologyGothenburgSweden
  2. 2.IVL Swedish Environmental Research InstituteGothenburgSweden
  3. 3.Department of Applied MechanicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations