Journal of Marine Science and Application

, Volume 16, Issue 3, pp 362–369 | Cite as

Shallow water modal evolution due to nonlinear internal waves

Article
  • 27 Downloads

Abstract

Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.

Keywords

shallow water acoustics three-dimensional sound propagation modal behavior horizontal ray nonlinear internal waves 

船用燃料中芳烃浓度对粒子排放的影响研究

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apel J, Ostrovsky L, Stepanyants Y, Lynch JF, 2007. Internal solitons in the ocean and their effect on underwater sound. Journal of the Acoustical Society of America, 121(2), 695–722. DOI: 10.1121/1.2395914CrossRefGoogle Scholar
  2. Badiey M, Katsnelson BG, Lynch JF, Pereselkov S, Siegmann WL, 2005. Measurement and modeling of three-dimensional sound intensity variations due to shallow-water internal waves. Journal of the Acoustical Society of America, 117(2), 613–625. DOI: 10.1121/1.1828571CrossRefGoogle Scholar
  3. Badiey M, Katsnelson BG, Lin YT, Lynch JF, 2011. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves. Journal of the Acoustical Society of America, 129(4), EL141–147. DOI: 10.1121/1.3553374CrossRefGoogle Scholar
  4. Badiey M, Katsnelson BG, Lynch JF, Pereselkov S, 2007. Frequency dependence and intensity fluctuations due to shallow water internal waves. Journal of the Acoustical Society of America, 122(2), 747–760. DOI: 10.1121/1.2722052CrossRefGoogle Scholar
  5. Badiey M, Mu Y, Lynch JF, Apel JR, Wolf S, 2002. Temporal and azimuthal dependence of sound propagation in shallow water with internal waves. IEEE Journal of Oceanic Engineering, 27, 117–129. DOI: 10.1109/48.989898CrossRefGoogle Scholar
  6. Badiey M, Wan L, Lynch JF, 2016. Statistics of nonlinear internal waves during the shallow water 2006 experiment. Journal of Atmospheric and Oceanic Technology, 33, 839–846. DOI: 10.1175/JTECH-D-15-0221.1CrossRefGoogle Scholar
  7. Badiey M, Wan L, Song AJ, 2013. Three-dimensional mapping of evolving internal waves during the shallow water 2006 experiment. Journal of the Acoustical Society of America, 134(1), EL7–13. DOI: 10.1121/1.4804945CrossRefGoogle Scholar
  8. Buck JR, Preisig JC, Wage KE, 1998. A unified framework for mode filtering and the maximum a posteriori mode filter. Journal of the Acoustical Society of America, 103(4), 1813–1824. DOI: 10.1121/1.421334CrossRefGoogle Scholar
  9. Burridge R, Weinberg H, 1977. Wave propagation and underwater acoustics. Springer, New York.Google Scholar
  10. Collis JM, Duda TF, Lynch JF, DeFerrari HA, 2008. Observed limiting cases of horizontal field coherence and array performance in a time-varying internal wavefield. Journal of the Acoustical Society of America, 124(3), EL97–103. DOI: 10.1121/1.2947630CrossRefGoogle Scholar
  11. DeFerrari HA, Lynch JF, Newhall AE, 2008. Temporal coherence of mode arrivals. Journal of the Acoustical Society of America, 124(3), EL104–109. DOI: 10.1121/1.2968304CrossRefGoogle Scholar
  12. Duda TF, Collis JM, Lin YT, Newhall AE, Lynch JF, DeFerrari HA, 2012. Horizontal coherence of low-frequency fixed-path sound in a continental shelf region with internal-wave activity. Journal of the Acoustical Society of America, 131(2), 1782–1797. DOI: 10.1121/1.3666003CrossRefGoogle Scholar
  13. Finette S, Oba R, 2003. Horizontal array beamforming in an azimuthally anisotropic internal wave field. Journal of the Acoustical Society of America, 114, 131–144. DOI:10.1121/1.1582441CrossRefGoogle Scholar
  14. Katsnelson BG, Pereselkov S, 2000. Low frequency horizontal acoustic refraction caused by internal wave solitons in a shallow sea. Acoustical Physics, 46, 684–691. DOI: 10.1134/1.1326723CrossRefGoogle Scholar
  15. Katsnelson BG, Petnikov V, Lynch JF, 2012. Fundamentals of shallow water acoustics. Springer, New York, 127.CrossRefMATHGoogle Scholar
  16. Lin YT, Duda TF, Lynch JF, 2009. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area. Journal of the Acoustical Society of America, 126, 1752–1765. DOI: 10.1121/1.3203268CrossRefGoogle Scholar
  17. Lynch JF, Lin YT, Duda TF, Newhall AE, 2010. Acoustic ducting, reflection, refraction, and dispersion by curved nonlinear internal waves in shallow water. IEEE Journal of Oceanic Engineering, 35, 12–27. DOI: 10.1109/JOE.2009.2038512CrossRefGoogle Scholar
  18. Newhall AE, Duda TF, Von der Heydt K, Irish JD, Kemp JN, Lemer SA, Liberatore SP, Lin YT, Lynch JF, Maffei AR, Morozov AK, Shmelev A, Sellers CJ, Witzell WE, 2007. Acoustic and oceanographic observations and configuration information for the WHOI moorings from the SW06 experiment. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States, Report No. WHOI-2007-04.CrossRefGoogle Scholar
  19. Oba R, Finette S, 2002. Acoustic propagation through anisotropic internal wave fields: transmission loss, cross-range coherence, and horizontal refraction. Journal of the Acoustical Society of America, 111, 769–784. DOI: 10.1121/1.1434943CrossRefGoogle Scholar
  20. Rubenstein D, Bril MN, 1991. Ocean variability and acoustic propagation. Kluwer Academic, Dordrecht, 215–228.CrossRefGoogle Scholar
  21. Shirley P, Marschner S, 2005. Fundamentals of computer graphics. 2nd ed., A K Peters, Wellesley, United States, 43-46, 63–67.MATHGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of Earth, Ocean and EnvironmentUniversity of DelawareNewarkUSA

Personalised recommendations