Journal of Marine Science and Application

, Volume 14, Issue 1, pp 105–112 | Cite as

Kinetics of atmospheric corrosion of mild steel in marine and rural environments

  • S. Palraj
  • M. Selvaraj
  • K. Maruthan
  • M. Natesan


In continuation of the extensive studies carried out to update the corrosion map of India, in this study, the degradation of mild steel by air pollutants was studied at 16 different locations from Nagore to Ammanichatram along the east coast of Tamilnadu, India over a period of two years. The weight loss study showed that the mild steel corrosion was more at Nagapattinam site, when compared to Ammanichatram and Maravakadu sites. A linear regression analysis of the experimental data was attempted to predict the mechanism of the corrosion. The composition of the corrosion products formed on the mild steel surfaces was identified by XRD technique. The corrosion rate values obtained are discussed in the light of the weathering parameters, atmospheric pollutants such as salt content & SO2 levels in the atmosphere, corrosion products formed on the mild steel surfaces.


Kinetics atmospheric corrosion mild steel XRD weight loss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASTM International (1990). ASTM G1-90: Standard practice for preparing, cleaning and evaluating corrosion test specimens. American Society for Testing and Materials, Philadelphia, USA.Google Scholar
  2. Barton K (1976). Protection against atmospheric corrosion. Wiley, London.Google Scholar
  3. Cao CN (2005). Corrosion in natural environment of materials in China. 1st ed. Chemical Industry Press, Beijing, China, 69. (in Chinese)Google Scholar
  4. Cook DC (2005). Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments. Corrosion Science, 47(10), 2550–2570. DOI: 10.1016/j.corsci.2004.10.018CrossRefGoogle Scholar
  5. Evans UR (1969). Mechanism of rusting. Corrosion Science, 9(11), 813–821. DOI: 10.1016/S0010-938X(69)80074-0CrossRefGoogle Scholar
  6. Feliu S, Morcillo M, Jr Feliu S (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts. Corrosion Science, 34(3), 415–422. DOI: 10.1016/0010-938X(93)90113-UCrossRefGoogle Scholar
  7. ISO (1992a). ISO 9223-1992: Corrosion of metals and alloys; Corrosivity of atmospheres; Classification. International Organization for Standardization.Google Scholar
  8. ISO (1992b). ISO 9225: 1992—Corrosion of metals and alloys, corrosivity of atmospheres, measurement of pollution. International Organization for Standardization.Google Scholar
  9. ISO (1992c). ISO 9226: 1992—Corrosion of metals and alloys, corrosivity of atmospheres, determination of corrosion rate of standard specimens for the revaluation of corrosivity. International Organization for Standardization.Google Scholar
  10. Ke W (2003). Chinese corrosion survey report. Chemical Industry Press, Beijing, China, 13. (in Chinese)Google Scholar
  11. Keiser JT, Brown CW, Heidersbach RH (1983). Characterization of passive film formed on weathering steels. Corrosion Science, 23(3), 251–259. DOI: 10.1016/0010-938X(83)90106-3CrossRefGoogle Scholar
  12. Lan TTN, Nishimura R, Tsujino Y, Satoh Y, Thoa NTP, Yokoi M, Maeda Y (2005). The effects of air pollution and climatic factors on atmospheric corrosion of marble under field exposure. Corrosion Science, 47(4), 1023–1038. DOI: 10.1016/j.corsci.2004.06.013CrossRefGoogle Scholar
  13. Marco JF, Gracia M, Gancedo JR (2000). Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere in the Antarctic and Easter Island. Corrosion Science, 42(4), 753–771. DOI: 10.1016/S0010-938X(99)00090-6CrossRefGoogle Scholar
  14. Misawa T, Asami K, Hashimoto K (1974). The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel. Corrosion Science, 14(4), 279–289. DOI: 10.1016/S0010-938X(74)80037-5CrossRefGoogle Scholar
  15. Mendoza AR, Corvo F (1999). Outdoor and indoor atmospheric corrosion of carbon steel. Corrosion Science, 41(1), 75–86. DOI: 10.1016/S0010-938X(98)00081-XCrossRefGoogle Scholar
  16. Natesan M, Palaniswamy N, Rengaswamy NS (2006a). Atmospheric corrosivity survey of India. Materials Performance, 45(1), 52–56.Google Scholar
  17. Natesan M, Palraj S, Venkatachari G, Palaniswamy N (2006b). Atmospheric corrosion of engineering materials at two exposure sites in Chennai—A comparative study. Corrosion, 62(10), 883–891. DOI: 10.5006/1.3279898CrossRefGoogle Scholar
  18. Natesan M, Selvaraj M, Maruthan K, Rajendran P (2005a). Using organic coatings to protect mild steel in a viscose industrial atmosphere. Materials Performance, 44(12), 30–34.Google Scholar
  19. Natesan M, Venkatachari G, Palaniswamy N (2005b). Corrosivity and durability maps of India. Corrosion Prevention and Control, 52(2), 43–54. DOI: 10.1515/CORRREV.2009.27.S1.61Google Scholar
  20. Natesan M, Venkatachari G, Palaniswamy N (2006c). Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India. Corrosion Science, 48(11), 3584–3608. DOI: 10.1016/j.corsci.2006.02.006CrossRefGoogle Scholar
  21. Oh SJ, Cook DC, Townsend HE (1999). Atmospheric corrosion of different steels in marine, rural and industrial environments. Corrosion Science, 41(9), 1687–1702. DOI: 10.1016/S0010-938X(99)00005-0CrossRefGoogle Scholar
  22. Philip A, Schweitaer PE (1999). Atmospheric degradation and corrosion control. Marcel Dekker Inc. Press, New York, USA.Google Scholar
  23. Raman A, Razvan A, Kuban B (1986). Characteristics of the rust from weathering steels in Louisiana Bridge Spans. Corrosion, 42(8), 447–455. DOI: Scholar
  24. Rao KNP, Lahiri AK (1970). Corrosion map of India. Corrosion Advisary Bureau, Metals Research Committee, Counc. Sci. Ind. Res., Tata Iron & Steel Co. Ltd., Jamshedpur, India, 48.Google Scholar
  25. Rozenfeld IL (1972). Atmospheric corrosion of metals. National Association of Corrosion Engineers, Houston, USA.Google Scholar
  26. Santana Rodríguez JJ, Santana Hernández FJ, González González JE (2002). XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain). Corrosion Science, 44(11), 2425–2438. DOI: 10.1016/S0010-938X(02)00047-1CrossRefGoogle Scholar
  27. Suzuki I, Masuko N, Hisamatsu Y (1979). Electrochemical properties of iron rust. Corrosion Science, 19(8), 521–535. DOI: 10.1016/S0010-938X(79)80057-8CrossRefGoogle Scholar
  28. Tidblad J, Mikhailov AA, Kucera V (2000). Model for the prediction of the time of wetness from average, annual data on relative air humidity and air temperature. Protection of Metals, 36(6), 533–540. DOI: 10.1023/A:1026621009635CrossRefGoogle Scholar
  29. Tran TNL, Nguyen TPT, Nishimura R, Tsujino Y, Yokoi M, Maeda Y (2006). Atmospheric corrosion of carbon steel under field exposurein the southern part of Vietnam. Corrosion Science, 48(1), 179–192. DOI: 10.1016/j.corsci.2004.11.018CrossRefGoogle Scholar
  30. Uhlig HH (1950). Cost of corrosion in the United States. Corrosion, 6(1), 29–33.CrossRefMathSciNetGoogle Scholar
  31. Yamashita M, Misawa T, Oh SJ, Balasubramanian R, Cook DC (2000). Mossbauer spectroscopic study of X-ray amorphous substance in the rust layer of weathering steel subjected to long term exposure in North America. Corrosion Engineering, 49(2), 133–144.Google Scholar
  32. Ma Yuantai, Li Ying, Wang Fuhui (2009). Corrosion of low carbon steel in atmospheric environments of different chloride content. Corrosion Science, 51(5), 997–1006. DOI: 10.1016/j.corsci.2009.02.009CrossRefMathSciNetGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Palraj
    • 1
  • M. Selvaraj
    • 1
  • K. Maruthan
    • 1
  • M. Natesan
    • 1
  1. 1.CSIR-Central Electro Chemical Research InstituteKaraikudiIndia

Personalised recommendations