Journal of Marine Science and Application

, Volume 12, Issue 1, pp 112–121 | Cite as

A potential flow based flight simulator for an underwater glider

  • Surasak Phoemsapthawee
  • Marc Le Boulluec
  • Jean-Marc Laurens
  • François Deniset
Research Paper

Abstract

Underwater gliders are recent innovative types of autonomous underwater vehicles (AUVs) used in ocean exploration and observation. They adjust their buoyancy to dive and to return to the ocean surface. During the change of altitude, they use the hydrodynamic forces developed by their wings to move forward. Their flights are controlled by changing the position of their centers of gravity and their buoyancy to adjust their trim and heel angles. For better flight control, the understanding of the hydrodynamic behavior and the flight mechanics of the underwater glider is necessary. A 6-DOF motion simulator is coupled with an unsteady potential flow model for this purpose. In some specific cases, the numerical study demonstrates that an inappropriate stabilizer dimension can cause counter-steering behavior. The simulator can be used to improve the automatic flight control. It can also be used for the hydrodynamic design optimization of the devices.

Keywords

underwater glider potential flow Newton-Euler equation autonomous underwater vehicles (AUVs) flight simulator 

Nomenclature

B

Center of buoyancy1

DW

Main wing drag force

Ds

Stabilizer drag force

E3

3×3 Identity matrix

F

Torsor of force and moment

G

Center of gravity

g

Gravitational acceleration (9.81 m/s2)

\( I_{m/O_b } \)

Matrix of moment of inertia defined in body reference frame

LW

Main wing lift force

LS

Stabilizer lift force

M

6×6 Matrix of inertia

Ma

6×6 Matrix of estimated added inertia

m

Glider mass

n

Normal vector

Ob

Origin of the body reference frame

Og

Origin of the Galilean reference frame

P

Force

Q

Moment

Rb

Body reference frame

Rg

Galilean reference frame

U

Torsor of glider velocity in body reference frame

\( V_{G/R_b } \)

Velocity of center of gravity with respect to origin of body reference frame

\( V_{O_b /R_b } \)

Glider velocity in body reference frame

|V|

Total velocity = (V X 2 + V Y 2 + V Z 2)1/2

XG

Position vector from O b to glider center of gravity in body reference frame

xb, yb, zb

Body reference frame coordinates

Glider volume

\( \Omega _{R_b /R_g } \)

Glider angular velocity

ρ

Water density (1 025 kg/m3)

ϕ

Roll, Euler angle around x-axis

ϕb

Heel command angle

θ

Pitch, Euler angle around y-axis

θb

Trim command angle

ψ

Yaw, Euler angle around z-axis

superscript dot

Time derivative

subscript ext

Reference to external

subscript fic

Reference to fictitious

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed-Ali T, Cuilerier L, Seube N (2003). Glider observer and identifier based on sliding modes control. Manoeuvring and Control of Marine Craft 2003 (MCMC 2003): A Proceedings Volume from the 6th IFAC Conference, Girona, Spain.Google Scholar
  2. Alvarez A, Caffaz A, Caiti A, Casalino G, Gualdesi L, Turetta A, Viviani R (2009). Fòlaga: a low-cost autonomous underwater vehicle combining glider and AUV capabilities. Journal of Ocean Engineering, 36(1), 24–38.CrossRefGoogle Scholar
  3. Bachmayer R, Leonard NE, Graver J, Fiorelli E, Bhatta P, Paley D (2004). Underwater gliders: recent developments and future applications. Proceedings of the IEEE International Symposium on Underwater Technology (UT’04), Taipei.Google Scholar
  4. Bender A, Steinberg DM, Friedman AL, Williams SB (2008). Analysis of an autonomous underwater glider. The Australian Conference on Robotics and Automation (ACRA2008), Canberra, Australia, 1–10.Google Scholar
  5. Bhatta P, Leonard NE (2002). Stabilization and coordination of underwater gliders. Proceedings of the 41 st IEEE Conference on Decision and Control, Las Vegas, USA, 2081–2086.Google Scholar
  6. Bhatta P, Leonard NE (2008). Nonlinear gliding stability and control for vehicles with hydrodynamic forcing. Automatica, 44(5), 1240–1250.MathSciNetCrossRefGoogle Scholar
  7. Caldeira-Savaira F, Clarke D (1988). The active control of swath motions. Proceedings of International Conference of Swath Ships and Advanced Multihulled Vessels II, Hague, the Netherlands.Google Scholar
  8. Eriksen CC, Osse TJ, Light RD, Wen T, Lehman TW, Sabin PL, Ballard JW, Chiodi AM (2001). Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE Journal of Oceanic Engineering, 26(4), 424–436.CrossRefGoogle Scholar
  9. Floc’h F, Laurens JM, Leroux JB, Kerampran S (2008). Trajectory prediction by coupling Euler-Newton equations and flow models. Proceedings of 11 th Numerical Towing Tank Symposium, Brest, France.Google Scholar
  10. Frajka-William E, Rhines PB, Eriksen CC (2009). Physical controls and mesoscale variability in the Labrador sea spring phytoplankton bloom observed by Seaglider. Journal of Deep Sea Research Part I: Oceanographic Research Papers, 56(12), 2144–2161.CrossRefGoogle Scholar
  11. Geisbert JS (2007). Hydrodynamic modeling for autonomous underwater vehicles using computational and semi-empirical methods. Master thesis, Virginia Polytechnic Institute and State University.Google Scholar
  12. Graver JG (2005). Underwater gliders: dynamics, control and design. PhD thesis, Princeton University.Google Scholar
  13. Graver JG, Bachmayer R, Leonard NE, Fratantoni DM (2003). Underwater glider model parameter identification. Proceedings of the 13 th International Symposium on Unmanned Untethered Submersible Technology (UUST), Durham, USA.Google Scholar
  14. Hoeijmakers H (1992). Panel methods for aerodynamic analysis and design. AGARD Report No.783, 5.1–5.47.Google Scholar
  15. Kan L, Zhang Y, Fan H, Yang W, Chen Z (2008). MATLAB-based simulation of buoyancy-driven underwater glider motion. Journal of Ocean University of China, 7(1), 113–118.CrossRefGoogle Scholar
  16. Kong Q, Ma J, Xia D (2010). Numerical and experimental study of the phase change process for underwater glider propelled by ocean thermal energy. Journal of Renewable Energy, 35(4), 771–779.CrossRefGoogle Scholar
  17. Moitie R, Seube N (2001). Guidance and control of an autonomous underwater glider. Proceedings of the 12 th International Symposium on Unmanned Untethered Submersible Technology, Durham, USA.Google Scholar
  18. Murman SM, Aftosmis MJ, Berger MJ (2003). Simulations of 6-DOF motion with a Cartesian method. Proceedings of 41 st AIAA Aerospace Sciences Meeting, Reno, USA, AIAA 2003-1246.Google Scholar
  19. Phoemsapthawee S, Leroux JB, Laurens JM, Deniset F (2009). A transpiration velocities based sheet cavitation model. Ship Technology Research/Schiffstechnik, 56(4), 161–176.Google Scholar
  20. Phoemsapthawee S, LeBoulluec M, Laurens JM, Deniset F (2011). Numerical study on hydrodynamic behavior of an underwater glider. Proceedings of the 30 th International Conference on Ocean, Offshore and Arctic Engineering OMAE-2011, Rotterdam, Netherlands, 521–526.Google Scholar
  21. Ramp S, Davis R, Leonard N, Shulman I, Chao Y, Robinson A, Marsden J, Lermusiaux P, Fratantoni D, Padaun J, Chavez F, Bahr F, Liang S, Leslie W, Li Z (2009). Preparing to predict: the second autonomous ocean sampling network (AOSN-II) experiment in the Monterey Bay. Journal of Deep Sea Research Part II: Topical Studies in Oceanography, 56(3–5), 68–86.CrossRefGoogle Scholar
  22. Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ (2004). Underwater gliders for ocean research. Marine Technology Society Journal, 38(2), 48–59.CrossRefGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Surasak Phoemsapthawee
    • 1
  • Marc Le Boulluec
    • 2
  • Jean-Marc Laurens
    • 3
  • François Deniset
    • 4
  1. 1.International Maritime CollegeKasetsart University-Si Racha CampusSi RachaThailand
  2. 2.Ifremer, RDT/HOPlouzanéFrance
  3. 3.Ensta-BretagneBrest cedex9France
  4. 4.IRENav, Ecole Navale, LanveocBrest cedex9France

Personalised recommendations