Journal of Marine Science and Application

, Volume 8, Issue 3, pp 204–210 | Cite as

Review of prediction techniques on hydrodynamic impact of ships

  • Guo-dong Xu (许国冬)Email author
  • Wen-yang Duan (段文洋)


This paper presents the survey and assessment of the estimation techniques on hydrodynamic impact. The description and definition of hydrodynamic impact are presented, and the categorization of prediction techniques and the difficulties are discussed. Analysis theories and numerical simulation techniques are reviewed and the characteristics of those theories and approaches are analyzed. The efforts are made to pinpoint the advantages and disadvantages. Recommendations for further research and development are made.


review prediction techniques hydrodynamic impact 


摘 要

文章对水动力砰击预报技术进行了研究与评估. 介绍了水动力砰击现象的描述、 定义, 对预报方法和理论进行了分类, 并讨论了预报技术中的困难与难点. 综合叙述了预报方法的理论分析与数值模拟, 指出这些预报方法的优点与缺点, 并对今后的研究与开发工作给出几点建议.


综述 预报技术 水动力砰击 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ROSENBLATT M. Hydrodynamic impact on displacement ship hulls[R]. Washington, D C: Ship Structure Committee: PB96–12901, 1995.Google Scholar
  2. [2]
    OCHI M K, MOTTER L E. Prediction of slamming characteristics and hull responses for ship design[J]. SNAME Transactions, 1973, 81: 144–176.Google Scholar
  3. [3]
    OCHI M K. Experiments on the effective of bow form on ship slamming[R]. DTMB: report1400, 1962.Google Scholar
  4. [4]
    STAVOVY A B, CHANG S L. Analytical determination of slamming pressure for high speed vehicles in waves[J]. Journal of Ship Research, 1976, 20(4): 190–198.Google Scholar
  5. [5]
    VON K. The impact of seaplane floats during landing[R]. NACA TN 321, Washington D C: National Advisory Committee for Aeronautics, 1929.Google Scholar
  6. [6]
    CHU W, ABRAMSON H N. Hydrodynamic theories of ship slamming-review and extension[J]. Journal of Ship Research, 1961, 4(4): 9–21.Google Scholar
  7. [7]
    WAGNER H. Uber stoss-und gleitvorgange an der oberflache von flussigkeiten[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215.CrossRefGoogle Scholar
  8. [8]
    ARMAND J L, COINTE R. Hydrodynamic impact analysis of a circular cylinder[C]// Proc 5th International Offshore Mechanics and Arctic Engineering. Tokyo, 1987: 609–634.Google Scholar
  9. [9]
    SZEBEHELY V G. Hydrodynamic approach to the slamming of ships[C]// 2nd Mid-western Conference on Fluid Mechanics. 1952.Google Scholar
  10. [10]
    HOWIS S D, OCHENSON J R, WILSON S K. Incompressible water entry problems at small deadrise angles[J]. Journal of Fluid Mechanics, 1991, 222: 215–230.CrossRefMathSciNetGoogle Scholar
  11. [11]
    ZHAO R, FALTINSEN O M. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246: 593–612.zbMATHCrossRefGoogle Scholar
  12. [12]
    WANATABLE T. Analytical expression of hydrodynamic impact pressure by matched asymptotic expansion technique[J]. Trans West-Japan Society of Naval Architect, 1986, 71(1): 77–85.Google Scholar
  13. [13]
    KOROBKIN A A, IAFRATI A. Hydrodynamic loads during initial stage of floating body impact[J]. Journal of Fluids and Structures, 2005, 21(4): 413–427.Google Scholar
  14. [14]
    KOROBKIN A, GUERETB R, MALENICA S. Hydroelastic coupling of beam finite element model with Wagner theory of water impact[J]. Journal of Fluids and Structures, 2006, 22(4): 493–504.CrossRefGoogle Scholar
  15. [15]
    MEI X, LIU Y, YUE D K P. On the water impact of general two-dimensional sections[J]. Applied Ocean Research, 1999, 21(1): 1–15.CrossRefGoogle Scholar
  16. [16]
    YETTOU El-M, DESROCHERS A, CHAMPOUX Y. A new analytical model for pressure estimation of symmetrical water impact of a rigid wedge at variable velocities[J]. Journal of Fluids and Structures, 2007, 23(3): 501–522.CrossRefGoogle Scholar
  17. [17]
    OLIVER J M. Second-order Wagner theory for two-dimensional water-entry problems at small deadrise angles[J]. Journal of fluid mechanics, 2007, 572: 59–85.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    KOROBKIN A A. Second-order Wagner theory of wave impact[J]. Journal of Engineering Mathematics, 2007, 58(1): 121–139.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    CUMBERBATCH E. The impact of a water wedge on the wall[J]. Journal of Fluid Mechanics, 1960, 7:353–374.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    DOBROVOLS’KAYA Z N. On some problems of similarity flow of fluids with a free surface[J]. Journal of Fluid Mechanics, 1969, 36: 805–829.CrossRefGoogle Scholar
  21. [21]
    GRECO M. A two dimensional study of green water loading[D]. Oslo: Norwegian University of Science and Technology, 2001.Google Scholar
  22. [22]
    ZHANG S, YUE D K P, TANIZAWA K. Simulation of plunging wave impact on a vertical wall[J]. Journal of Fluid Mechanics, 1996, 327: 221–254.zbMATHCrossRefGoogle Scholar
  23. [23]
    XU Guodong. Fluid/rigid-body impact problem and study of similarity solution[D]. Harbin: Harbin Engineering University, 2008.Google Scholar
  24. [24]
    WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004, 19(3): 277–289.CrossRefGoogle Scholar
  25. [25]
    XU G D, DUAN W Y, WU G X. Similarity solution for wedge-shaped fluid/structure impact[C]// 23rd International Workshop on Water Waves and Floating Bodies. Jeju, Korea, 2008: 176–179.Google Scholar
  26. [26]
    SEMENOV Y. IAFRATI A. On the nonlinear water entry problem of asymmetric wedges[J]. Journal of Fluid Mechanics, 2006, 547: 231–256.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    LONGUET-HIGGINS M S, COKELET E D. The deformation of steep surface waves on water[J]. Proceedings of the Royal Society. London A, 1976, 350: 1–26.zbMATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    IAFRATI A, CARCATERRA A, CIAPPI E. Hydroelastic analysis of a simple oscillator impacting the free surface[J]. Journal of Ship Research, 2000, 44(2): 278–289.Google Scholar
  29. [29]
    IAFRATI A, KOROBKIN A A. Starting flow generated by the impulsive start of a floating wedge[J]. Journal of Engineering Mathematics, 2005, 51(2): 99–126.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    ZHAO R, FALTINSEN O M, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]// Proceedings of the 21st Symposium on Naval Hydrodynamics. Trondheim, 1996: 408–423.Google Scholar
  31. [31]
    LU C H, HE Y S, WU G X. Coupled analysis of nonlinear interaction between fluid and structure during impact[J]. Journal of Fluids and Structures, 2000, 14(1): 127–146.CrossRefGoogle Scholar
  32. [32]
    WU G X. Numerical simulation of water entry of twin wedges[J]. Journal of Fluids and Structures, 2006, 22(1): 99–108.CrossRefGoogle Scholar
  33. [33]
    WU G X. Fluid impact on a solid boundary[J]. Journal of Fluids and Structures, 2007, 23(5): 755–765.CrossRefGoogle Scholar
  34. [34]
    WU G X. Liquid column and liquid droplet impact[J]. Quarterly Journal of Mechanics and Applied Mathematics, 2007, 60(4): 497–511.zbMATHCrossRefGoogle Scholar
  35. [35]
    TROESCH A W, KANG C G. Hydrodynamic impact loads on three dimensional bodies[C]// Proceedings of the 16th Symposium on Naval Hydrodynamics. Berkeley, 1987.Google Scholar
  36. [36]
    BATTISTIN D, IAFRATI A. Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies[J]. Journal of Fluids and Structures, 2003, 17(5): 643–664.CrossRefGoogle Scholar
  37. [37]
    PESUEX B, GORNET L, DONGUY B. Hydrodynamic impact: numerical and experimental investigations[J]. Journal of Fluids and Structures, 2005, 21(3): 277–303.CrossRefGoogle Scholar
  38. [38]
    FALTINSEN O M, CHEN Z A. A generalized Wagner theory method for three dimensional slamming[J]. Journal of Ship Research, 2005, 49(4): 279–287.Google Scholar
  39. [39]
    SCOLAN Y M, KOROBKIN A A. Three dimensional theory of water impact. Part 1. Inverse Wagner problem[J]. Journal of Fluid Mechanics, 2001, 440: 293–326.zbMATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    SCOLAN Y M, KOROBKIN A A. Energy distribution from vertical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid[J]. Journal of Fluids and Structures, 2003, 17(3): 275–286.CrossRefGoogle Scholar
  41. [41]
    ZHU X Y, FALTINSEN O M, HU C H. Water entry and exit of a horizontal circular cylinder[J]. Journal of Offshore Mechanics and Arctic Engineering, 2007, 129(2): 253–264.CrossRefGoogle Scholar
  42. [42]
    HU C H, KASHIWAGI M. A CIP-based method for numerical simulation of violent free surface flows[J]. Journal of Marine Science, 2004, 9(1): 143–157.CrossRefGoogle Scholar
  43. [43]
    KLEEFSMAN K M T, FEKKEN G, VELDMAN A E P, et al. A VOF based simulation method for wave impact problems[J]. Journal of Computational Physics, 2005, 206(1): 363–393.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    SAMES P C, SCHELLIN T, MUZAFERIJA E S. Application of a two-fluid finite volume method to ship slamming[J]. Journal of Offshore Mechanics and Arctic Engineering, 1999, 121(1): 47–52.CrossRefGoogle Scholar
  45. [45]
    OGER G, DORING M, FERRANT P. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803–822.zbMATHCrossRefMathSciNetGoogle Scholar
  46. [46]
    OGER G, ALESSANDRINI B, FERRANT P. 3-D impact flows using an enhanced parallelized SPH model[C]// Proceedings of International Conference on Violent Flows. Fukuoka, Japan, 2007: 103–111.Google Scholar
  47. [47]
    GRECO M, BAZZI T, COLICCHIO G. 3-D ship-seakeeping problem: weak-scatterer theory plus shallow-water on deck[C]// Proceedings of the 23rd International Workshop on Water Waves and Floating Bodies. Jeju, 2008: 69–72.Google Scholar
  48. [48]
    AQUELET N, SOULI M, OLOSSON L. Euler-Lagrange coupling with damping effects: application to slamming problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(1): 110–132.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Harbin Engineering University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Guo-dong Xu (许国冬)
    • 1
    Email author
  • Wen-yang Duan (段文洋)
    • 1
  1. 1.College of Shipbuilding EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations