Skip to main content

Advertisement

Log in

Stock Structure Analysis of the Japanese Spanish Mackerel Scomberomorus niphonius (Cuvier, 1832) Along the China Coast Based on Truss Network

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The Japanese Spanish mackerel Scomberomorus niphonius (Cuvier, 1832) is widely distributed in the subtropical and temperate waters of the northwestern Pacific Ocean, supporting one of the most important commercial fisheries in China. However, ignoring the potential population structure changes induced by fishing pressure and climate change may undermine the population stability under the current management strategy. In this study, the population structure of the Japanese Spanish mackerel was investigated based on a morphometric truss network system. A total of 534 individuals were randomly collected from commercial gill nets spanning eight major spawning grounds in the Bohai, Yellow, and East China Seas during the peak spawning seasons respectively. A total of 17 measurements (including eye diameter) were conducted in each specimen and subjected to principal component analysis (PCA) and discriminant function analysis (DFA). The results of PCA indicated that the first two factors cumulatively caused 78.38% of the total morphometric variation and observable differences, primarily fin the caudal and trunk areas. The results of DFA revealed that the eight spawning groups can be divided into three stocks, i.e., southern, middle, and northern stocks, with 68.7% of total accuracy. In contrast to previous studies, the spawning groups of the Japanese Spanish mackerel demonstrated a tendency to disperse to northern regions. In conclusion, this study found that to maintain the stability of the population structure and the total production of Japanese Spanish mackerel S. niphonius (Cuvier, 1832), a newly revised management method should be developed and implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Booke, H. E., 1981. The conundrum of the stock concept are nature and nurture definable in fishery science? Canadian Journal of Fisheries and Aquatic Sciences, 38: 1479–1480, DOI: 10.1139/f81-200.

    Article  Google Scholar 

  • Bookstein, F. L., Chernoff, B., Elder, R. L., Humphries, J. M., Smith, G. R., and Strauss, R. E., 1985. Morphometrics in Evolutionary Biology: The Geometry of Size and Shape Change, with Examples from Gishes. Special publication, Academy of Natural Sciences of Philadelphia, 277pp.

    Google Scholar 

  • Carvalho, G. R., and Hauser, L., 1994. Molecular genetics and the stock concept in fisheries. Reviews in Fish Biology and Fisheries, 4: 326–350.

    Article  Google Scholar 

  • Coetzee, J. C., Lingen, C. D. V. D., Hutchings, L., and Fairweather, T. P., 2008. Has the fishery contributed to a major shift in the distribution of South African sardine? ICES Journal of Marine Science, 65 (9): 1676–1688, DOI: 10.1093/icesjms/fsn184.

    Article  Google Scholar 

  • Elliott, N. G., Haskard, K., and Koslow, J. A., 1995. Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia. Journal of Fish Biology, 46 (2): 202–220, DOI: 10.1111/j.1095-8649.1995.tb05962.x.

    Article  Google Scholar 

  • Francoy, T. M., Franco, F. D. F., and Roubik, D. W., 2012. Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie, 43 (6): 609–617, DOI: 10.1007/s13592-012-0132-2.

    Article  Google Scholar 

  • Gaggiotti, O., 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology, 15: 1419–1439, DOI: 10.1111/j.1365-294X.2006.02890.x.

    Article  Google Scholar 

  • Hammer, O., Harper, D. A. T., and Ryan, P. D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron, 4 (1): 1–9.

    Google Scholar 

  • Hanski, I., 1999. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87: 209–219, DOI: 10.1143/JJAP.45.6974.

    Article  Google Scholar 

  • Hanski, I., and Simberloff, D., 1997. The metapopulation approach, its history, conceptual domain, and application to conservation. In: Metapopulation Biology: Ecology, Genetics, and Evolution. Hanski, I., and Gilpin, M. E., eds., Academic Press, San Digego, 5–26, DOI: 10.1016/B978-012323445-2/50003-1.

    Chapter  Google Scholar 

  • Hsieh, C. H., Yamauchi, A., Nakazawa, T., and Wang, W. F., 2010. Fishing effects on age and spatial structures undermine population stability of fishes. Aquatic Science, 72 (2): 165–178, DOI: 10.1007/s00027-009-0122-2.

    Article  Google Scholar 

  • Hutchinson, W. F., 2008. The dangers of ignoring stock complexity in fishery management: The case of the North Sea cod. Biology Letters, 4: 693–695, DOI: 10.1098/rsbl.2008.0443.

    Article  Google Scholar 

  • Hutchings, J. A., Minto, C., Ricard, D., Baum, J. K., and Jensen, O. P., 2010. Trends in the abundance of marine fishes. Canadian Journal of Fisheries and Aquatic Sciences, 67 (8): 1205–1210, DOI: 10.1139/F10-081.

    Article  Google Scholar 

  • Imre, I., McLaughlin, R. L., and Noakes, D. L. G., 2002. Phenotypic plasticity in brook charr: Changes in caudal fin induced by water flow. Journal of Fish Bioligy, 61 (5): 1171–1181, DOI: 10.1111/j.1095-8649.2002.tb02463.x.

    Article  Google Scholar 

  • Jolliffe, I. T., Hair, J. F., Anderson, R. E., and Tatham, R. L., 1988. Multivariate data analysis with readings. Journal of the Royal Statistical Society Series A (Statistics in Society), 151 (3): 558, DOI: 10.2307/2983017.

    Article  Google Scholar 

  • Karakousis, Y., Triantaphyllidis, C., and Economidis, P. S., 1991. Morphological variability among seven populations of brown trout, Salmon trutta L., in Greece. Journal of Fish Bioligy, 38 (6): 807–817, DOI: 10.1111/j.1095-8649.1991.tb03620.x.

    Article  Google Scholar 

  • Liu, C. X., Zhang, X., and Yang, K. W., 1982. Studies on the growth of Spanish Mackerel, Scomberomorus niphonius in the Huanghai Sea and Bohai Sea. Oceanologia et Limnologia Sinica, 13: 170–178.

    Google Scholar 

  • Loy, A., Genov, P., Galfo, M., Jacobone, M. G., and Vigna Taglianti, A., 2008. Cranial morphometrics of the Apennine brown bear (Ursus arctos marsicanus) and preliminary notes on the relationships with other southern European populations. Italian Journal of Zoology, 75 (1): 67–75, DOI: 10.1080/1125 0000701689857.

    Article  Google Scholar 

  • Lu, H. J., and Lee, H. L., 2014. Changes in the fish species composition in the coastal zones of the Kuroshio Current and China Coastal Current during periods of climate change: Observations from the set-net fishery (1993–2011). Fisheries Research, 155: 103–113, DOI: 10.1016/j.fishres.2014.02.032.

    Article  Google Scholar 

  • Matthews, W. J., 1998. Morphology, habitat use, and life history. In: Patterns in Freshwater Fish Ecology. Springer, Boston, MA, 756pp.

    Chapter  Google Scholar 

  • Mohaddasi, M., Shabanipour, N., and Abdolmaleki, S., 2013. Morphometric variation among four populations of Shemaya (Alburnus chalcoides) in the south of Caspian Sea using truss network. The Journal of Basic and Applied Zoology, 66 (2): 87–92, DOI: 10.1016/j.jobaz.2013.09.001.

    Article  Google Scholar 

  • Murawski, S. A., 2010. Rebuilding depleted fish stocks: The good, the bad, and, mostly, the ugly. ICES Journal of Marine Science, 67 (9): 1830–1840, DOI: 10.1093/icesjms/fsq125.

    Article  Google Scholar 

  • Ostrand, K. G., and Wilde, G. R., 2002. Seasonal and spatial variation in a prairie stream-fish assemblage. Ecology of Freshwater Fish, 11 (3): 137–149, DOI: 10.1034/j.1600-0633.2002.00005.x.

    Article  Google Scholar 

  • Pazhayamadom, D. G., Chakraborty, S. K., Jaiswar, A. K., Sud- heesan, D., Sajina, A. M., and Jahageerdar, S., 2015. Stock structure analysis of ‘bombay duck’ (Harpadon nehereus, Hamilton, 1822) along the indian coast using truss network morphometrics. Journal of Applied Ichthyology, 31 (1): 37–44, DOI: 10.1111/jai.12629.

    Article  Google Scholar 

  • Pinheiro, A., Teixeira, C. M., Rego, A. L., Marques, J. F., and Cabral, H. N., 2005. Genetic and morphological variation of Solea lascaris (Risso, 1810) along the Portuguese coast. Fisheries Research, 73 (1–2): 67–78, DOI: 10.1016/j.fishres.2005.01.004.

    Article  Google Scholar 

  • Purushothaman, P., Chakraborty, R. D., Kuberan, G., Maheswarudu, G., Baby, P. K., Sreesanth, L., Ragesh, N., and Pazhayamadom, D. G., 2017. Stock structure analysis of the Arabian red shrimp (Aristeus alcocki Ramadan, 1938) in the Indian coast with truss network morphometrics. Canadian Journal of Zoology, 96 (5): 411–424, DOI: 10.1139/cjz-2016-0283.

    Article  Google Scholar 

  • Qiu, S., and Ye, M., 1996. Studies on the reproductive biology of Scomberomorus niphonius in the Yellow Sea and Bohai Sea. Oceanologia et Limnologia Sinica, 27 (5): 463–470.

    Google Scholar 

  • Qiu, S., Li, D., and Xu, B., 2007. Contributions of fisheries management to the Japanese Spanish mackerel resources in the Bohai Sea and Yellow Sea. Shandong Fisheries, 24 (3): 39–42.

    Google Scholar 

  • Reiss, H., Hoarau, G., Dickey-Collas, M., and Wolff, W. J., 2009. Genetic population structure of marine fish: Mismatch between biological and fisheries management units. Fish and Fisheries, 10 (4): 361–395, DOI: 10.1111/j.1467-2979.2008.00324.x.

    Article  Google Scholar 

  • Rohlf, F. J., 2006. TpsDig2, digital landmarks and outlines, version 2. 17. Department of Ecology and Evolution, State University of New York at Stony Brook, NY, http://life.bio.sunysb.edu/morph/.

    Google Scholar 

  • Shui, B. N., Han, Z. Q., Gao, T. X., Miao, Z. Q., and Yana-gimoto, T., 2009. Mitochondrial DNA variation in the East China Sea and Yellow Sea populations of Japanese Spanish mackerel Scomberomorus niphonius. Fisheries Science, 75 (3): 593–600, DOI: 10.1007/s12562-009-0083-3.

    Article  Google Scholar 

  • Stephenson, R. L., 1999. Stock complexity in fisheries management: A perspective of emerging issues related to population sub-units. Fisheries Research, 43 (1–3): 247–249, DOI: 10.1016/S0165-7836(99)00076-4.

    Article  Google Scholar 

  • Strauss, R. E., and Bookstein, F. L., 1982. The truss: Body form reconstructions in morphometrics. Systematic Biology, 31 (2): 113–135, DOI: 10.1093/sysbio/31.2.113.

    Article  Google Scholar 

  • Tian, Y., Kidokoro, H., and Watanabe, T., 2006. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Progress in Oceanography, 68 (2–4): 217–237, DOI: 10.1016/j.pocean.2006.02.009.

    Article  Google Scholar 

  • Turan, C., 1999. A note on the examination of morphometric differentiation among fish populations: The truss system. Turkish Journal of Zoology, 23 (3): 259–264.

    Google Scholar 

  • Wei, C., and Zhou, B., 1988. The identifications of populations of the Spanish mackerel, Scomberomorus niphonius (Cuvier et Valenciennes) in the Bohai Sea and the Yellow Sea. Acta Zoologica Sinica, 34 (1): 71–81.

    Google Scholar 

  • Ying, Y., Chen, Y., Lin, L., and Gao, T., 2011. Risks of ignoring fish population spatial structure in fisheries management. Canadian Journal of Fisheries and Aquatic Sciences, 68 (12): 2101–2120, DOI: 10.1139/f2011-116.

    Article  Google Scholar 

  • Zhang, C., Ye, Z., Li, Z., Wan, R., Ren, Y., and Dou, S., 2016. Population structure of Japanese Spanish mackerel Scomberomorus niphonius in the Bohai Sea, the Yellow Sea and the East China Sea: Evidence from random forests based on oto-lith features. Fisheries Science, 82 (2): 251–256, DOI: 10.1007/s12562-016-0968-x.

    Article  Google Scholar 

  • Zhang, C., Ye, Z., Panhwar, S. K., and Shen, W., 2013. Stock discrimination of the Japanese Spanish mackerel (Scomberomorus niphonius) based on the otolith shape analysis in the Yellow Sea and Bohai Sea. Journal of Applied Ichthyology, 29 (2): 368–373, DOI: 10.1111/jai.12084.

    Article  Google Scholar 

  • Zhu, L. B., and Zhao, B. R., 1991. Distributions and variations of the transparency in the Bohai Sea, Yellow Sea, and East China Sea. Transactions of Oceanology and Limnology, 3: 1–11.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of Ocean University of China (Nos. 201762015 and 201822027). We are grateful to Prof. Andrew Bakun (University of Miami) and Dr. Robert Boenish (Environmental Defense Fund) for their valuable comments and language polishing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, C., Ye, Z. et al. Stock Structure Analysis of the Japanese Spanish Mackerel Scomberomorus niphonius (Cuvier, 1832) Along the China Coast Based on Truss Network. J. Ocean Univ. China 19, 446–452 (2020). https://doi.org/10.1007/s11802-020-4233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-020-4233-7

Key words

Navigation