Advertisement

Inversion of Evaporation and Water Vapor Transport Using HY-2 Multi-Sensor Data

Abstract

HY-2 satellite is the first marine dynamic environment satellite of China. In this study, global evaporation and water vapor transport of the global sea surface are calculated on the basis of HY-2 multi-sensor data from April 1 to 30, 2014. The algorithm of evaporation and water vapor transport is discussed in detail, and results are compared with other reanalysis data. The sea surface temperature of HY-2 is in good agreement with the ARGO buoy data. Two clusters are shown in the scatter plot of HY-2 and OAFlux evaporation due to the uneven global distribution of evaporation. To improve the calculation accuracy, we compared the different parameterization schemes and adopted the method of calibrating HY-2 precipitation data by SSM/I and Global Precipitation Climatology Project (GPCP) data. In calculating the water vapor transport, the adjustment scheme is proposed to match the balance of the water cycle for data in the low latitudes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. Beljaars, A. C. M., 1995a. The parametrization of surface fluxes in large-scale models under free convection. Quarterly Journal of the Royal Meteorological Society, 121 (522): 255–270.

  2. Beljaars, A. C. M., 1995b. The impact of some aspects of the boundary layer scheme in the ECMWF model. In: Proceedings of Seminar on Parameterization of Sub-Grid Scale Physical Processes. Reading, 125–161.

  3. Benton, G. S., and Estoque, M. A., 1954. Water-vapor transfer over the North American continent. Journal of Meteorology, 11 (6): 462–477.

  4. Bowen, I. S., 1926. The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27 (6): 779.

  5. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F., 1971. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences, 28 (2): 181–189.

  6. Cleugh, H. A., Leuning, R., Mu, Q., and Running, S. W., 2007. Regional evaporation estimates from flux tower and modis satellite data. Remote Sensing of Environment, 106 (3): 285–304.

  7. Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., and Briegleb, B., 2004. Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technical Note, National Center for Atmospheric Research, Boulder, Colorado, 214pp.

  8. Dalton, J., 1802. Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat. Memoirs of the Literary and Philosophical Society of Manchester, 5 (2): 535–602.

  9. DeCosmo, J., Katsaros, K. B., Smith, S. D., Anderson, R. J., Oost, W. A., Bumke, K., and Chadwick, H., 1996. Air-sea exchange of water vapor and sensible heat: The humidity exchange over the sea (HEXOS) results. Journal of Geophysical Research: Oceans, 101 (C5): 12001–12016.

  10. Dobler, A., Müller, R., and Ahrens, B., 2011. Development and evaluation of a simple method to estimate evaporation from satellite data. Meteorologische Zeitschrift, 20 (6): 615–623.

  11. Dupuis, H., Taylor, P. K., Weill, A., and Katsaros, K., 1997. Inertial dissipation method applied to derive turbulent fluxes over the ocean during the surface of the ocean, fluxes and interactions with the atmosphere/atlantic stratocumulus transition experiment (SOFIA/ASTEX) and structure des echanges mer-atmosphere, proprietes des heterogeneites oceaniques: recherche experimentale (SEMAPHORE) experiments with low to moderate wind speeds. Journal of Geophysical Research: Oceans, 102 (C9): 21115–21129.

  12. Dyer, A. J., and Hicks, B. B., 1970. Flux-gradient relationships in the constant flux layer. Quarterly Journal of the Royal Meteorological Society, 96 (410): 715–721.

  13. Foken, T., 2006. 50 years of the Monin-Obukhov similarity theory. Boundary-Layer Meteorology, 119 (3): 431–447.

  14. Fowle, F. E., 1912. The spectroscopic determination of aqueous vapor. The Astrophysical Journal, 35: 149.

  15. Goff, J. A., and Gratch, S., 1946. Low-pressure properties of water from −160 to 212°F. Transactions of the American Society of Heating and Ventilating Engineers. New York, 95–122.

  16. Gutowski, W. J. J., Chen, Y., and Ötles, Z., 1997, Atmospheric water vapor transport in NCEP-NCAR reanalyses: Comparison with river discharge in the central united states. Bulletin of the American Meteorological Society, 78 (9): 1957–1969.

  17. Harbeck Jr., G. E., Kohler, M. A., and Koberg, G. E., 1958. Water-Loss Investigations: Lake Mead Studies. Geological Survey Professional, U. S. Government Printing Office, Washington D. C., Paper 298, 100pp.

  18. Hilburn, K. A., 2009. The passive microwave water cycle product. Technical Report No. 072409. Remote Sensing Systems, Santa Rosa, CA, 30pp.

  19. Hilburn, K. A., Bourassa, M. A., and O’Brien, J. J., 2003. Development of scatterometer-derived surface pressures for the Southern Ocean. Journal of Geophysical Research: Oceans, 108 (C7): 3244, DOI: https://doi.org/10.1029/2003JC001772.

  20. Holton, J. R., and Hakim, G. J., 2012. An Introduction to Dynamic Meteorology (Vol. 88). Academic Press, Massachusetts, 67pp.

  21. Kubota, M., and Mitsumori, S., 1997. Sensible heat flux estimated by using satellite data over the North Pacific. COSPAR Colloquia Series, 8: 127–136.

  22. Kuzmin, P. O., 1957. Hydrophysical investigations of land waters. International Association of Scientific Hydrology, 3: 468–478.

  23. Large, W. G., and Pond, S., 1982. Sensible and latent heat flux measurements over the ocean. Journal of Physical Oceanography, 12 (5): 464–482.

  24. Li, H., Xu, F., Zhou, W., Wang, D., Wright, J. S., Liu, Z., and Lin, Y., 2017. Development of a global gridded argo data set with barnes successive corrections. Journal of Geophysical Research: Oceans, 122 (2): 866–889.

  25. Lu, S. L., Liu, Z. H., Li, H., Li, Z. Q., Wu, X. F., Sun, C. H., and Xu, J. P., 2019. User Manual of Global Ocean Argo Gridded Dataset (BOA_Argo). China Argo Real-Time Data Center, 26pp.

  26. Peixoto, J. P., 1973. Atmospheric Vapour Flux Computations for Hydrological Purposes (No. 20). Secretariat of the World Meteorological Organization, Geneva, 81pp.

  27. Peixoto, J. P., and Oort, A. H., 1992. Physics of Climate. American Institute of Physics. New York, 520pp.

  28. Peixoto, J. P., De Almeida, M., Rosen, R. D., and Salstein, D. A., 1982. Atmospheric moisture transport and the water balance of the Mediterranean Sea. Water Resources Research, 18 (1): 83–90.

  29. Penman, H. L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 193 (1032): 120–145.

  30. Pol, S. L. C., Ruf, C. S., and Keihm, S. J., 1998. Improved 20-to 32-GHz atmospheric absorption model. Radio Science, 33 (5): 1319–1333.

  31. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B., 1992. Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press, Cambridge, 933pp.

  32. Roads, J. O., Chen, S. C., Guetter, A. K., and Georgakakos, K. P., 1994. Large-scale aspects of the united states hydrologic cycle. Bulletin of the American Meteorological Society, 75 (9): 1589–1610.

  33. Roads, J. O., Kanamitsu, M., and Stewart, R., 2002. CSE water and energy budgets in the NCEP DOE reanalysis II. Journal of Hydrometeorology, 3 (3): 227–248.

  34. Sibson, R., 1981. A brief description of natural neighbour interpolation. Interpreting Multivariate Data, 21: 21–36.

  35. Sohn, B. J., Smith, E. A., Robertson, F. R., and Park, S. C., 2004. Derived over-ocean water vapor transports from satellite-retrieved E-P datasets. Journal of Climate, 17 (6): 1352–1365.

  36. Sohn, B., 2002. Use of satellite-derived rainfall data for diagnosing water vapor transport over the global oceans. In: 34th COSPA R Scientific Assembly. Houston, Texas, No. 2346.

  37. Starr, V. P., and Peixoto, J. P., 1964. The hemispheric eddy flux of water vapor and its implications for the mechanics of the general circulation. Archiv für Meteorologie, Geophysik und Bioklimatologie: Serie A, 14 (2): 111–130.

  38. Thornthwaite, C. W., and Holzman, B., 1939. The determination of evaporation from land and water surfaces. Monthly Weather Review, 67 (1): 4–11.

  39. Wentz, F. J., Ricciardulli, L., Hilburn, K., and Mears, C., 2007. How much more rain will global warming bring? Science, 317 (5835): 233–235.

  40. Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W., 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95 (2): 164–176.

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (No. 4197 6017), the Ministry of Science and Technology of China (No. 2016YFC1401405), and the National Natural Science Foundation of China (No. U1406401).

Author information

Correspondence to Jian Sun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Sun, J. & Guan, C. Inversion of Evaporation and Water Vapor Transport Using HY-2 Multi-Sensor Data. J. Ocean Univ. China 19, 13–22 (2020). https://doi.org/10.1007/s11802-020-4197-7

Download citation

Key words

  • HY-2 multi-sensor data
  • inversion
  • evaporation
  • water vapor transport
  • data calibration