Advertisement

Journal of Ocean University of China

, Volume 19, Issue 1, pp 69–80 | Cite as

Research Progress of Seafloor Pockmarks in Spatio-Temporal Distribution and Classification

  • Cuiling Xu
  • Guoqiang Xu
  • Junhui XingEmail author
  • Zhilei Sun
  • Nengyou Wu
Review
  • 36 Downloads

Abstract

Seafloor pockmarks are important indicators of submarine methane seepages and slope instabilities. In order to promote the understanding of submarine pockmarks and their relationship with sediment instabilities and climate changes, here we summarize the research results of pockmarks in the spatio-temporal distributions and shaping factors. Most of pockmarks occur along active or passive continental margins during the last 25 kyr B.P.. Circular and ellipse are the most common forms of pockmarks, whereas pockmarks in a special crescent or elongated shape are indicators of slope instabilities, and ring-shape pockmarks are endemic to the gas hydrate zones. Further researches should be focused on the trigger mechanism of climate changes based on the pockmarks in the high latitudes formed during the deglaciation periods, and the role of gas hydrates in the seafloor evolution should be elucidated. In addition, the feature of pockmarks at their early stage (e.g., developing gas chimneys and gas driving sedimentary doming) and the relations between pockmarks and mass movements, mud diapirs could be further studied to clarify the influences of rapid methane release from submarine sediments on the atmospheric carbon contents.

Key words

pockmark cold seep methane seepage gas hydrate slump 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 41606044, 41906068, 91 858208), the National Key Research and Development Program (No. 2018YFC031000303), the Taishan Scholar Special Experts Project (No. ts201712079) and the Marine Geological Survey Program of China Geological Survey (No. DD20190819). We also appreciate the two anonymous reviewers for their valuable suggestions

References

  1. Ambrose, W. G., Panieri, G., Schneider, A., Plaza-Faverola, A., Carroll, M. L., Åström, E. K. L., Locke, W. L., and Carroll, J., 2015. Bivalve shell horizons in seafloor pockmarks of the last glacial-interglacial transition: A thousand years of methane emissions in the Arctic Ocean. Geochemistry, Geophysics, Geosystems, 16: 4108–4129, DOI:  https://doi.org/10.1002/2015GC005980.Google Scholar
  2. Andresen, K. J., Huuse, M., and Clausen, O. R., 2008. Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea - Implications for bottom current activity and fluid migration. Basin Research, 20: 445–466.Google Scholar
  3. Andrews, B. D., Brothers, L. L., and Barnhardt, W. A., 2010. Automated feature extraction and spatial organization of seafloor pockmarks, Belfast Bay, Maine, USA. Geomorphology, 124: 55–64, DOI:  https://doi.org/10.1016/j.geomorph.2010.08.009.Google Scholar
  4. Bayon, G., Gideon, M., Etoubleau, H., Caprais, J., and Sultan, N., 2015. U-Th isotope constraints on gas hydrate and pockmark dynamics at the Niger Delta margin. Marine Geology, 370: 87–98.Google Scholar
  5. Baltzer, A., Ehrhold, A., Rigolet, C., Souron, A., Cordier, C., Clouet, H., and Dubois, S. F., 2014. Geophysical exploration of an active pockmark field in the Bay of Concarneau, southern Brittany, and implications for resident suspension feeders. Geo-Marine Letters, 34: 215–230.Google Scholar
  6. Brothers, L. L., Kelley, J. T., Belknap, D. F., Barnhardt, W. A., Andrews, B. D., and Maynard, M. L., 2011. More than a century of bathymetric observations and present-day shallow sediment characterization in Belfast Bay, Maine, USA: Implications for pockmark field longevity. Geo-Marine Letters, 31: 237–248.Google Scholar
  7. Cathles, L. M., Su, Z., and Chen, D., 2010. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Marine and Petroleum Geology, 27: 82–91.Google Scholar
  8. Chand, S., Cremiere, A., Lepland, A., Thorsnes, T., Brunstad, H., and Stoddart, D., 2017. Long-term fluid expulsion revealed by carbonate crusts and pockmarks connected to subsurface gas anomalies and palaeo-channels in the central North Sea. Geo- Marine Letters, 37: 215–227.Google Scholar
  9. Chen, J., Song, H., Guan, Y., Pinheiro, L. M., and Geng, M., 2018. Geological and oceanographic controls on seabed fluid escape structures in the northern Zhongjiannan Basin, South China Sea. Journal of Asian Earth Science, 168: 38–47.Google Scholar
  10. Chen, J., Song, H., Guan, Y., Yang, S., Pinheiro, L. M., Bai, Y., Liu, B., and Geng, M., 2015. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea. Deep Sea Research, Part II, Tropical Studies in Oceanography, 122: 106–117.Google Scholar
  11. Chen, S. C., Hsu, S. K., Tsai, C. H., Ku, C. Y., Yeh, Y. C., and Wang, Y., 2010. Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches, 31: 133–147, DOI:  https://doi.org/10.1007/s11001-010-9097-6.Google Scholar
  12. Christodoulou, D., Papatheodorou, G., Ferentinos, G., and Masson, M., 2003. Active seepage in two contrasting pockmark fields in the Patras and Corinth Gulfs, Greece. Geo-Marine Letters, 23: 194–199, DOI:  https://doi.org/10.1007/s00367-003-0151-0.Google Scholar
  13. Çifçi, G., Dondurur, D., and Ergün, M., 2003. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea. Geo-Marine Letters, 23: 311–322.Google Scholar
  14. Crémière, A., Lepland, A., Chand, S., Sahy, D., Condon, D. J., Noble, S. R., Martma, T., Thorsnes, T., Sauer, S., and Brunstad, H., 2016. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet. Nature Communication, 7: 11509, DOI:  https://doi.org/10.1038/ncomms11509.Google Scholar
  15. Dalla Valle, G., and Gamberi, F., 2011. Pockmarks and seafloor instability in the Olbia continental slope (northeastern Sardinian margin, Tyrrhenian Sea). Marine Geophysical Research, 32: 193–205, DOI:  https://doi.org/10.1007/s11001-011-9133-1.Google Scholar
  16. Dandapath, S., Chakraborty, B., Karisiddaiah, S. M., Menezes, A., Ranade, G., Fernandes, W., Naik, D. K., and Prudhvi Raju, K. N., 2010. Morphology of pockmarks along the western continental margin of India: Employing multibeam bathymetry and backscatter data. Marine and Petroleum Geology, 27: 2107–2117, DOI:  https://doi.org/10.1016/j.marpetgeo.2010.09.005.Google Scholar
  17. Dandapath, S., Chakraborty, B., Maslov, N., Karisiddaiah, S. M., Ghosh, D., Fernandes, W., and Menezes, A., 2012. Characterization of seafloor pockmark seepage of hydrocarbons employing fractal: A case study from the western continental margin of India. Marine and Petroleum Geology, 29: 115–128.Google Scholar
  18. de Mahiques, M. M., Schattner, U., Lazar, M., Sumida, P. Y. G., and de Souza, L. A. P., 2017. An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: Spatial analysis and its relationship with salt diapirism. Heliyon, 3: e00257, DOI:  https://doi.org/10.1016/j.heliyon.2017.e00257.Google Scholar
  19. de Prunelé, A., Ruffine, L., Riboulot, V., Peters, C. A., Croguennec, C., Guyader, V., Pape, T., Bollinger, C., Bayon, G., Caprais, J. C., Germain, Y., Donval, J. P., Marsset, T., Bohrmann, G., Géli, L., Rabiu, A., Lescanne, M., Cauquil, E., and Sultan, N., 2017. Focused hydrocarbon-migration in shallow sediments of a pockmark cluster in the Niger Delta (off Nigeria). Geochemistry, Geophysics, Geosystems, 18: 93–112.Google Scholar
  20. Di, P., Huang, H., Huang, B., He, J., and Chen, D., 2012. Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea. Journal of Tropical Oceanography, 31 (5): 26–36 (in Chinese with English abstract).Google Scholar
  21. Dimitrov, L., and Woodside, J., 2003. Deep sea pockmark environments in the eastern Mediterranean. Marine Geology, 195 (1-4): 263–276.Google Scholar
  22. Duarte, J. C., Terrinha, P., Rosas, F. M., Valadares, V., Pinheiro, L. M., Matias, L., Magalhães, V., and Roque, C., 2010. Crescent- shaped morphotectonic features in the Gulf of Cadiz (offshore SW Iberia). Marine Geology, 271: 236–249.Google Scholar
  23. Eichhubl, P., Greene, H. G., and Maher, N., 2002. Physiography of an active transpressive margin basin: High-resolution bathymetry of the Santa Barbara Basin, Southern California continental borderland. Marine Geology, 184: 95–120.Google Scholar
  24. Fandel, C. L., Lippmann, T. C., Foster, D. L., and Brothers, L. L., 2016a. Observations of pockmark flow structure in Belfast Bay, Maine, Part 2: Evidence for cavity flow. Geo-Marine Letters, 37 (1): 1–8.Google Scholar
  25. Fandel, C. L., Lippmann, T. C., Irish, J. D., and Brothers, L. L., 2016b. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: Current-induced mixing. Geo-Marine Letters, 37 (1): 1–14, DOI:  https://doi.org/10.1007/s00367-016-0472-4.Google Scholar
  26. Fandel, C. L., Lippmann, T. C., Foster, D. L., and Brothers, L. L., 2017. Observations of pockmark flow structure in Belfast Bay, Maine, Part 3: Implications for sediment transport. Geo- Marine Letters, 37 (1): 23–34.Google Scholar
  27. Feldens, P., Schmidt, M., Mücke, I., Augustin, N., Al-Farawati, R., Orif, M., and Faber, E., 2016. Expelled subsalt fluids form a pockmark field in the eastern Red Sea. Geo-Marine Letters, 36: 339–352, DOI:  https://doi.org/10.1007/s00367-016-0451-9.Google Scholar
  28. Gamberi, F., and Rovere, M., 2010. Mud diapirs, mud volcanoes and fluid flow in the rear of the Calabrian Arc Orogenic Wedge (southeastern Tyrrhenian Sea). Basin Research, 22: 452–464, DOI:  https://doi.org/10.1111/j.1365-2117.2010.00473.x.Google Scholar
  29. Gay, A., Lopez, M., Cochonat, P., Levaché, D., Sermondadaz, G., and Seranne, M., 2006a. Evidences of early to late fluid migration from an upper Miocene turbiditic channel revealed by 3D seismic coupled to geochemical sampling within seafloor pockmarks, Lower Congo Basin. Marine and Petroleum Geology, 23: 387–399.Google Scholar
  30. Gay, A., Lopez, M., Cochonat, P., Séranne, M., Levaché, D., and Sermondadaz, G., 2006b. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene- Miocene turbiditic palaeochannels in the Lower Congo Basin. Marine Geology, 226: 25–40.Google Scholar
  31. Gay, A., Lopez, M., Cochonat, P., Sultan, N., Cauquil, E., and Brigaud, F., 2003. Sinuous pockmark belt as indicator of a shallow buried turbiditic channel on the lower slope of the Congo Basin, West African margin. Geological Society, 216: 173–190, DOI:  https://doi.org/10.1144/gsl.sp.2003.216.01.12.Google Scholar
  32. Gay, A., Lopez, M., Ondreas, H., Charlou, J. L., and Sermondadaz, G., Cochonat, P., 2006c. Seafloor facies related to upward methane flux within a giant pockmark of the Lower Congo Basin. Marine Geology, 226: 81–95.Google Scholar
  33. Gay, A., Takano, Y., Gilhooly, W. P., Berndt, C., Heeschen, K., Suzuki, N., Saegusa, S., Nakagawa, F., Tsunogai, U., Jiang, S. Y., and Lopez, M., 2011. Geophysical and geochemical evidence of large scale fluid flow within shallow sediments in the eastern Gulf of Mexico, offshore Louisiana. Geofluids, 11: 34–47, DOI:  https://doi.org/10.1111/j.1468-8123.2010.00304.x.Google Scholar
  34. Goswami, B. K., Weitemeyer, K. A., Bünz, S., Timothy, A., Westbrook, G. K., Ker, S., and Sinha, M. C., 2017. Variations in pockmark composition at the Vestnesa Ridge: Insights from marine controlled source electromagnetic and seismic data. Geochemistry, Geophysics, Geosystems, 18 (3): 1111–1125.Google Scholar
  35. Hammer, Ø., Webb, K. E., and Depreiter, D., 2009. Numerical simulation of upwelling currents in pockmarks, and data from the Inner Oslofjord, Norway. Geo-Marine Letters, 29: 269–275, DOI:  https://doi.org/10.1007/s00367-009-0140-z.Google Scholar
  36. Hasiotis, T., Papatheodorou, G., and Ferentinos, G., 2002. A string of large and deep gas-induced depressions (pockmarks) offshore Killini Peninsula, western Greece. Geo-Marine Letters, 22: 142–149, DOI:  https://doi.org/10.1007/s00367-002-0106-x.Google Scholar
  37. He, J., Zhang, W., and Lu, Z., 2017. Seepage system of oil-gas and its exploration in Yinggehai Basin located at northwest of South China Sea. Journal of Natural Gas Geoscience, 2 (1): 29–41, DOI:  https://doi.org/10.1016/j.jnggs.2017.01.001.Google Scholar
  38. Hill, J. C., Driscoll, N. W., Weissel, J. K., and Goff, J. A., 2004. Large-scale elongated gas blowouts along the U.S. Atlantic margin. Journal of Geophysical Research: Solid Earth, 109: 1–14, DOI:  https://doi.org/10.1029/2004JB002969.Google Scholar
  39. Hill, T. M., Paull, C. K., and Critser, R. B., 2012. Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex. Geo-Marine Letters, 32: 73–84, DOI:  https://doi.org/10.1007/s00367-011-0258-7.Google Scholar
  40. Hjelstuen, B. O., Haflidason, H., Sejrup, H. P., and Nygård, A., 2010. Sedimentary and structural control on pockmark development- evidence from the Nyegga pockmark field, NW European margin. Geo-Marine Letters, 30: 221–230.Google Scholar
  41. Hovland, M., Heggland, R., de Vries, M. H., and Tjelta, T. I., 2010. Unit-pockmarks and their potential significance for predicting fluid flow. Marine and Petroleum Geology, 27: 1190–1199, DOI:  https://doi.org/10.1016/j.marpetgeo.2010.02.005.Google Scholar
  42. Hovland, M., Jensen, S., and Indreiten, T., 2012. Unit pockmarks associated with Lophelia coral reefs off mid-Norway: More evidence of control by ‘fertilizing’ bottom currents. Geo-Marine Letters, 32: 545–554.Google Scholar
  43. Hustoft, S., Bünz, S., and Mienert, J., 2010. Three-dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid- Norway. Basin Research, 22: 465–480.Google Scholar
  44. Hustoft, S., Dugan, B., and Mienert, J., 2009. Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway. Geochemistry, Geophysics, Geosystems, 10 (6): Q06012, DOI:  https://doi.org/10.1029/2009GC002409.Google Scholar
  45. Iglesias, J., Ercilla, G., García-Gil, S., and Judd, A. G., 2010. Pockforms: An evaluation of pockmark-like seabed features on the Landes Plateau, Bay of Biscay. Geo-Marine Letters, 30: 207–219, DOI:  https://doi.org/10.1007/s00367-009-0182-2.Google Scholar
  46. Ingrassia, M., Martorelli, E., Bosman, A., Macelloni, L., Sposato, A., and Chiocci, F. L., 2015. The zannone giant pockmark: First evidence of a giant complex seeping structure in shallowwater, central Mediterranean Sea, Italy. Marine Geology, 363: 38–51, DOI:  https://doi.org/10.1016/j.margeo.2015.02.005.Google Scholar
  47. Jeong, K. S., Cho, J. H., Kim, S. R., Hyun, S., and Tsunogai, U., 2004. Geophysical and geochemical observations on actively seeping hydrocarbon gases on the south-eastern Yellow Sea continental shelf. Geo-Marine Letters, 24: 53–62.Google Scholar
  48. Karstens, J., Haflidason, H., Becker, L. W. M., Berndt, C., Rupke, L., Planke, S., Liebetrau, V., Schmidt, M., and Mienert, J., 2018. Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation. Nature Communication, 9: 635.Google Scholar
  49. King, L. H., and MacLean, B., 1970. Pockmarks on the Scotian Shelf. Geological Society of America Bulletin, 81: 3141–3148, DOI:  https://doi.org/10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2.Google Scholar
  50. Kluesner, J. W., Silver, E. A., Bangs, N. L., McIntosh, K. D., Gibson, J., Orange, D., Ranero, C. R., and Von Huene, R., 2013. High density of structurally controlled, shallow to deep water fluid seep indicators imaged offshore Costa Rica. Geochemistry, Geophysics, Geosystems, 14: 519–539.Google Scholar
  51. Koch, S., Berndt, C., Bialas, J., Haeckel, M., Crutchley, G., Papenberg, C., Klaeschen, D., and Greinert, J., 2015. Gas-controlled seafloor doming. Geology, 43 (7): 571–574.Google Scholar
  52. Kopf, A. J., 2002. Significance of mud volcanism. Reviews of Geophysics, 40 (2): 1005, DOI:  https://doi.org/10.1029/2000RG000093.Google Scholar
  53. Lastras, G., Canals, M., Urgeles, R., Hughes-Clarke, J. E., and Acosta, J., 2004. Shallow slides and pockmark swarms in the Eivissa Channel, western Mediterranean Sea. Sedimentology, 51: 837–850, DOI:  https://doi.org/10.1111/j.1365-3091.2004.00654.x.Google Scholar
  54. León, R., Somoza, L., Medialdea, T., González, F. J., Gimenez-Moreno, C. J., and Pérez-López, R., 2014. Pockmarks on either side of the strait of Gibraltar: Formation from overpressured shallow contourite gas reservoirs and internal wave action during the last glacial sea-level lowstand? Geo-Marine Letters, 34: 131–151, DOI:  https://doi.org/10.1007/s00367-014-0358-2.Google Scholar
  55. León, R., Somoza, L., Medialdea, T., Hernández-Molina, F. J., Vázquez, J. T., Díaz-del-Rio, V., and González, F. J., 2010. Pockmarks, collapses and blind valleys in the Gulf of Cádiz. Geo-Marine Letters, 30 (3-4): 231–247.Google Scholar
  56. Li, J., Wu, S., Hu, G., and Zhang, J., 2016. The characteristics and distribution pattern of seafloor sinuous pockmark train in the Niger Delta Basin, West Africa. Acta Geologica Sinica, 90 (3): 1057–1058.Google Scholar
  57. Li, L., Pei, D., Du, P., Yi, R., Zheng, B., and Wang, M., 2013. Architecture, character, evolution and genesis of seabed pockmarks: A case study to the continental slope in Rio Muni Basin, West Africa. Marine Origin Petroleum Geology, 18: 53–58.Google Scholar
  58. Luo, M., Chen, L., Wang, S., Yan, W., Wang, H., and Chen, D., 2013. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha uplift, northwestern South China Sea. Marine and Petroleum Geology, 48: 247–259.Google Scholar
  59. Maia, R. A., Cartwright, J., and Andersen, E., 2016. Shallow plumbing systems inferred from spatial analysis of pockmark arrays. Marine and Petroleum Geology, 77: 865–881.Google Scholar
  60. Marinaro, G., Etiope, G., Bue, N. L., Favali, P., Papatheodorou, G., Christodoulou, D., Furlan, F., Gasparoni, F., Ferentinos, G., Masson, M., and Rolin, J. F., 2006. Monitoring of a methaneseeping pockmark by cabled benthic observatory (Patras Gulf, Greece). Geo-Marine Letters, 26: 297–302.Google Scholar
  61. Masoumi, S., Reuning, L., Back, S., Sandrin, A., and Kukla, P. A., 2014. Buried pockmarks on the top chalk surface of the Danish North Sea and their potential significance for interpreting palaeocirculation patterns. Internation Journal of Earth Science, 103: 563–578, DOI:  https://doi.org/10.1007/s00531-013-0977-2.Google Scholar
  62. Mau, S., Gentz, T., Körber, J. H., Torres, M., Römer, M., Sahling, H., Wintersteller, P., Martinez, R., Schlüter, M., and Helmke, E., 2014. Seasonal methane accumulation and release from a gas emission site in the central North Sea. Biogeosciences Discussions, 11: 5261–5276.Google Scholar
  63. Mazzini, A., Svensen, H. H., Forsberg, C. F., Linge, H., Lauritzen, S. E., Haflidason, H., Hammer, Ø., Planke, S., and Tjelta, T. I., 2017. A climatic trigger for the giant troll pockmark field in the northern North Sea. Earth and Planetary Science Letters, 464: 24–34, DOI:  https://doi.org/10.1016/j.epsl.2017.02.014.Google Scholar
  64. Mazzini, A., Svensen, H. H., Planke, S., Forsberg, C. F., and Tjelta, T. I., 2016. Pockmarks and methanogenic carbonates above the giant Troll gas field in the Norwegian North Sea. Marine Geology, 373: 26–38.Google Scholar
  65. McAdoo, B. G., Orange, D. L., Silver, E. A., McIntosh, K., Abbott, L., Galewsky, J., Kahn, L., and Protti, M., 1996. Seafloor structural observations, Costa Rica accretionary prism. Geophysical Research Letters, 23: 883–886.Google Scholar
  66. Miller, D. J., Ketzer, J. M., Viana, A. R., Kowsmann, R. O., Freire, A. F. M., Oreiro, S. G., Augustin, A. H., Lourega, R. V., Rodrigues, L. F., Heemann, R., Preissler, A. G., Machado, C. X., and Sbrissa, G. F., 2015. Natural gas hydrates in the Rio Grande Cone (Brazil): A new province in the western South Atlantic. Marine and Petroleum Geology, 67: 187–196.Google Scholar
  67. Moss, J. L., Cartwright, J., and Moore, R., 2012. Evidence for fluid migration following pockmark formation: Examples from the Nile deep sea fan. Marine Geology, 303-306: 1–13.Google Scholar
  68. Ondréas, H., Olu, K., Fouquet, Y., Charlou, J. L., Gay, A., Dennielou, B., Donval, J. P., Fifis, A., Nadalig, T., Cochonat, P., Cauquil, E., Bourillet, J. F., Moigne, M. L., and Sibuet, M., 2005. ROV study of a giant pockmark on the Gabon continental margin. Geo-Marine Letters, 25: 281–292.Google Scholar
  69. Pau, M., Gisler, G., and Hammer, Ø., 2014. Experimental investigation of the hydrodynamics in pockmarks using particle tracking velocimetry. Geo-Marine Letters, 34: 11–19.Google Scholar
  70. Paull, C. K., Ussler, W., Holbrook, W. S., Hill, T. M., Keaten, R., Mienert, J., Haflidason, H., Johnson, J. E., Winters, W. J., and Lorenson, T. D., 2008. Origin of pockmarks and chimney structures on the flanks of the Storegga Slide, offshore Norway. Geo-Marine Letters, 28: 43–51.Google Scholar
  71. Pilcher, R., and Argent, J., 2007. Mega-pockmarks and linear pockmark trains on the West African continental margin. Marine Geology, 244: 15–32.Google Scholar
  72. Pinet, N., Duchesne, M., and Lavoie, D., 2010. Linking a linear pockmark train with a buried Palaeozoic structure: A case study from the St. Lawrence Estuary. Geo-Marine Letters, 30: 517–522, DOI:  https://doi.org/10.1007/s00367-009-0179-x.Google Scholar
  73. Plaza-Faverola, A., Bünz, S., and Mienert, J., 2011. Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. Earth and Planetary Science Letters, 305: 297–308, DOI:  https://doi.org/10.1016/j.epsl.2011.03.001.Google Scholar
  74. Prouty, N. G., Sahy, D., Ruppel, C. D., Roark, E. B., Condon, D., Brooke, S., Ross, S. W., and Demopoulos, A. W. J., 2016. Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps. Earth and Planetary Science Letters, 449: 332–344, DOI:  https://doi.org/10.1016/j.epsl.2016.05.023.Google Scholar
  75. Riboulot, V., Cattaneo, A., Sultan, N., Garziglia, S., Ker, S., Imbert, P., and Voisset, M., 2013. Sea-level change and free gas occurrence influencing a submarine landslide and pockmark formation and distribution in deepwater Nigeria. Earth and Planetary Science Letters, 375: 78–91.Google Scholar
  76. Riboulot, V., Sultan, N., Imbert, P., and Ker, S., 2016. Initiation of gas-hydrate pockmark in deep-water Nigeria: Geo-mechanical analysis and modelling. Earth and Planetary Science Letters, 434: 252–263, DOI:  https://doi.org/10.1016/j.epsl.2015.11.047.Google Scholar
  77. Roy, S., Hovland, M., and Braathen, A., 2016. Evidence of fluid seepage in Grønfjorden, Spitsbergen: Implications from an integrated acoustic study of seafloor morphology, marine sediments and tectonics. Marine Geology, 380: 67–78.Google Scholar
  78. Schattner, U., Lazar, M., Souza, L. A. P., ten Brink, U., and Mahiques, M. M., 2016. Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil. Geo-Marine Letters, 36: 457–464.Google Scholar
  79. Sultan, N., Bohrmann, G., Ruffine, L., Pape, T., Riboulot, V., Colliat, J. L., de Prunele, A., Dennielou, B., Garziglia, S., Himmler, T., Marsset, T., Peters, C. A., Rabiu, A., and Wei, J., 2014. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution. Journal of Geophysical Research: Solid Earth, 119: 2679–2694.Google Scholar
  80. Sumida, P. Y. G., Yoshinaga, M. Y., Madureira, L. A. S. P., and Hovland, M., 2004. Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Marine Geology, 207: 159–167.Google Scholar
  81. Sun, Q., Wu, S., Hovland, M., Luo, P., Lu, Y., and Qu, T., 2011. The morphologies and genesis of mega-pockmarks near the Xisha uplift, South China Sea. Marine and Petroleum Geology, 28: 1146–1156, DOI:  https://doi.org/10.1016/j.marpetgeo.2011.03.003.Google Scholar
  82. Szpak, M. T., Monteys, X., O’Reilly, S., Simpson, A. J., Garcia, X., Evans, R. L., Allen, C. C. R., McNally, D. J., Courtier-Murias, D., and Kelleher, B. P., 2012. Geophysical and geochemical survey of a large marine pockmark on the Malin Shelf, Ireland. Geochemistry, Geophysics, Geosystems, 13: 1–18.Google Scholar
  83. Sztybor, K., and Rasmussen, T. L., 2016. Diagenetic disturbances of marine sedimentary records from methane-influenced environments in the Fram Strait as indications of variation in seep intensity during the last 35000 years. Boreas, 46: 212–228.Google Scholar
  84. Tasianas, A., Bünz, S., Bellwald, B., Hammer, O., Planke, S., Lebedeva-Icanova, N., and Krassakis, P., 2018. High-resolution 3D seismic study of pockmarks and shallow fluid flow systems at the Snøhvit hydrocarbon field in the SW Barents Sea. Marine Geology, 403: 247–261.Google Scholar
  85. Taviani, M., Angeletti, L., Ceregato, A., Foglini, F., Froglia, C., and Trincardi, F., 2013. The Gela Basin pockmark field in the Strait of Sicily (Mediterranean Sea): Chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage. Biogeosciences, 10: 4653–4671.Google Scholar
  86. Verdicchio, G., and Trincardi, F., 2006. Short-distance variability in slope bed-forms along the southwestern Adriatic Margin (central Mediterranean). Marine Geology, 234: 271–292.Google Scholar
  87. Von Rad, U., Berner, U., Delisle, G., Doose-Rolinski, H., Fechner, N., and Linke, P., 2000. Gas and fluid venting at the Makran accretionary wedge off Pakistan. Geo-Marine Letters, 20 (1): 10–19.Google Scholar
  88. Wang, H., Liu, H., Zhang, M., and Wang, X., 2016. Wave-induced seepage and its possible contribution to the formation of pockmarks in the Huanghe (Yellow) River Delta. Chinese Journal of Oceanology and Limnology, 34: 200–211.Google Scholar
  89. Wei, J., Pape, T., Sultan, N., Colliat, J. L., Himmler, T., Ruffine, L., de Prunelé, A., Dennielou, B., Garziglia, S., Marsset, T., Peters, C. A., Rabiu, A., and Bohrmann, G., 2015. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin - Results and interpretation from shallow drilling. Marine and Petroleum Geology, 59: 359–370.Google Scholar
  90. Wenau, S., Spieß, V., Pape, T., and Fekete, N., 2017. Controlling mechanisms of giant deep water pockmarks in the Lower Congo Basin. Marine and Petroleum Geology, 83: 140–157.Google Scholar
  91. Xu, C., Greinert, J., Haeckel, M., Bialas, J., Dimitrov, L., and Zhao, G., 2018. The character and formation of elongated depressions on the upper Bulgarian Slope. Journal of Ocean University of China, 17: 555–562.Google Scholar
  92. Zeppilli, D., Canals, M., and Danovaro, R., 2012. Pockmarks enhance deep-sea benthic biodiversity: A case study in the western Mediterranean Sea. Diversity and Distributions, 18: 832–846.Google Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Cuiling Xu
    • 1
    • 2
    • 3
  • Guoqiang Xu
    • 4
  • Junhui Xing
    • 2
    • 3
    Email author
  • Zhilei Sun
    • 1
    • 2
  • Nengyou Wu
    • 1
    • 2
  1. 1.Key Laboratory of Gas Hydrate, Qingdao Institute of Marine GeologyMinistry of Natural ResourcesQingdaoChina
  2. 2.Laboratory for Marine Mineral ResourcesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.College of Marine Geosciences/Key Laboratory of Submarine Geosciences and Prospecting TechniquesMinistry of EducationQingdaoChina
  4. 4.The First Institute of OceanographyMinistry of Natural ResourcesQingdaoChina

Personalised recommendations