Advertisement

Journal of Ocean University of China

, Volume 18, Issue 6, pp 1402–1410 | Cite as

The Effect of Organic Carbon on Soil Bacterial Diversity in an Antarctic Lake Region

  • Wenbing Han
  • Nengfei WangEmail author
  • Yue Ma
  • Jinjiang Lv
  • Shuang Wang
  • Botao Zhang
  • Zhihui Jiang
  • Huansheng Cao
Article
  • 12 Downloads

Abstract

This study assessed the effects of changes in organic carbon content on soil bacterial community composition and diversity in the Antarctic Fildes Peninsula. 16S rRNA gene sequencing was performed to investigate bacterial community composition. Firstly, we found that organic carbon (OrC) and nutrients showed an increasing trend in the lake area. Secondly, soil geochemistry changes affected microbial composition in the soil. Specifically, we found 3416 operational taxonomical units (OTUs) in 300 genera in five main phyla: Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes. Although the diversity was similar among the four sites, the composition was different. Among them, Hungateii content changed very significantly, from 16.67% to 33.33%. Canonical correspondence analysis showed that most measured geochemical factors were relevant in structuring microbiomes, and organic carbon concentration showed the highest correlation, followed by NO3-N. Hungateii was significantly correlated with the content of organic carbon. Our finding suggested organic carbon played an important role in soil bacterial communities of the Antarctic coastal lake region.

Key words

bacterial community composition geochemical factor high-throughput sequencing organic carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 41776198), the Basic Scientific Fund for National Public Research Institutes of China (No. GY0219Q10), and the Development Fund of Marine Bioactive Substances, SOA (No. MBSMAT-2017-01).

References

  1. Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., and Donk, E. V., 2009. Lakes as sentinels of climate change. Limnology & Oceanography, 54 (6 part 2): 2283–2297.CrossRefGoogle Scholar
  2. Berg, G., and Smalla, K., 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68 (1): 1–13.CrossRefGoogle Scholar
  3. Bölter, M., 2011. Soil development and soil biology on King George Island, Maritime Antarctic. Polish Polar Research, 32 (2): 105–116.CrossRefGoogle Scholar
  4. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., 2010a. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7 (5): 335–336.CrossRefGoogle Scholar
  5. Caruso, T., Trokhymets, V., Bargagli, R., and Convey, P., 2013. Biotic interactions as a structuring force in soil communities: Evidence from the micro-arthropods of an Antarctic moss model system. Oecologia, 172 (2): 495–503.CrossRefGoogle Scholar
  6. Chotte, J. L., Ladd, J. N., and Amato, M., 1998. Sites of microbial assimilation, and turnover of soluble and particulate 14C-labelled substrates decomposing in a clay soil. Soil Biology & Biochemistry, 30 (2): 205–218.CrossRefGoogle Scholar
  7. Edgar, R. C., 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10: 996–998.CrossRefGoogle Scholar
  8. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27 (16): 2194–2200.CrossRefGoogle Scholar
  9. Edwards, A. C., Scalenghe, R., and Freppaz, M., 2007. Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review. Quaternary International, 162 (1): 172–181.CrossRefGoogle Scholar
  10. Goldfarb, K. C., Karaoz, U., Hanson, C. A., Santee, C. A., Bradford, M. A., Treseder, K. K., Wallenstein, M. D., and Brodie, E. L., 2011. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology, 2 (1): 94.Google Scholar
  11. Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., Sodergren, E., Methé, B., DeSantis, T. Z., Petrosino, J. F.Google Scholar
  12. Knight, R., and Birren, B. W., 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrose-quenced PCR amplicons. Genome Research, 21 (3): 494–504.CrossRefGoogle Scholar
  13. Hogg, I. D., Cary, S. C., Convey, P., Newsham, K. K., O’Donnell, A. G., Adams, B. J., Aislabie, J., Frati, F., Stevens, M. I., and Wall, D. H., 2006. Biotic interactions in Antarctic terrestrial ecosystems: Are they a factor. Soil Biology & Biochemistry, 38 (10): 3035–3040.CrossRefGoogle Scholar
  14. Hu, L., Shi, X., Yu, Z., Lin, T., Wang, H., Ma, D., Guo, Z., and Yang, Z., 2012. Distribution of sedimentary organic matter in estuarine-inner shelf regions of the East China Sea: Implications for hydrodynamic forces and anthropogenic impact. Marine Chemistry, 142–144 (11): 29–40.CrossRefGoogle Scholar
  15. Hughes, K. A., Convey, P., Ziska, L. H., and Dukes, J. S., 2014. Non-native species in Antarctic terrestrial environments: The impacts of climate change and human activity. In: Invasive Species & Global Climate Change, Ziska, L., ed., 81–100, DOI:  https://doi.org/10.1079/9781780641645.0081.
  16. Jeanette, B., Brandt, K. K., Al-Soud, W. A., Holm, P. E., Hansen, L. H., Srensen, S. R. J., and Ole, N., 2012. Selection for Cutolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Applied & Environmental Microbiology, 78 (20): 7438–7446.CrossRefGoogle Scholar
  17. Jones, H. G., 1991. Snow chemistry and biological activity: A particular perspective on nutrient cycling. NATO ASI Series, 28: 173–228.Google Scholar
  18. Jones, H. G., 2010. The ecology of snow-covered systems: A brief overview of nutrient cycling and life in the cold. Hydrological Processes, 13 (14–15): 2135–2147.Google Scholar
  19. Kuramae, E. E., Yergeau, E., Wong, L. C., Pijl, A. S., van Veen, J. A., and Kowalchuk, G. A., 2015. Soil characteristics more strongly influence soil bacterial communities than land-use type. Fems Microbiology Ecology, 79 (1): 12–24.CrossRefGoogle Scholar
  20. Ladd, J. N., Gestel, M. V., Monrozier, L. J., and Amato, M., 1996. Distribution of organic 14C and 15N in particle-size fractions of soils incubated with 14C, 15N-labelled glucose/NH4, and legume and wheat straw residues. Soil Biology & Biochemistry, 28 (7): 893–905.CrossRefGoogle Scholar
  21. Lagomarsino, A., Grego, S., and Kandeler, E., 2012. Soil organic carbon distribution drives microbial activity and functional diversity in particle and aggregate-size fractions. Pedobiologia, 55 (2): 101–110.CrossRefGoogle Scholar
  22. Lavian, I. L., Vishnevetsky, S., Barness, G., and Steinberger, Y., 2001. Soil microbial community and bacterial functional diversity at Machu Picchu, King George Island, Antarctica. Polar Biology, 24 (6): 411–416.CrossRefGoogle Scholar
  23. Liu, J., Zang, J., Zhao, C., Yu, Z., Xu, B., Li, J., and Ran, X., 2016. Phosphorus speciation, transformation, and preservation in the coastal area of Rushan Bay. Science of the Total Environment, 565: 258–270.CrossRefGoogle Scholar
  24. Magoä, T., and Salzberg, S. L., 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27 (21): 2957–2963.CrossRefGoogle Scholar
  25. Marilley, L., Vogt, G., Blanc, M., and Aragno, M., 1998. Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant & Soil, 198 (2): 219–224.CrossRefGoogle Scholar
  26. Michelsen, C. F., Pedas, P., Glaring, M. A., Schjoerring, J. K., and Stougaard, P., 2014. Bacterial diversity in Greenlandic soils as affected by potato cropping and inorganic versus organic fertilization. Polar Biology, 37 (1): 61–71.CrossRefGoogle Scholar
  27. Monserrate, E., Leschine, S. B., and Canale-Parola, E., 2001. Clostridium hungatei sp. nov., a mesophilic, N2-fixing celluolytic bacterium isolated from soil. International Journal of Systematic & Evolutionary Microbiology, 51 (1): 123–132.CrossRefGoogle Scholar
  28. Nicolas, J. P., Vogelmann, A. M., Scott, R. C., Wilson, A. B., Cadeddu, M. P., Bromwich, D. H., Verlinde, J., Lubin, D., Russell, L. M., Jenkinson, C., Powers, H. H., Ryczek, M., Stone, G., and Wille, J. D., 2017. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. 8: 15799.Google Scholar
  29. Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., and Wagner, H., 2016. Vegan: Community Ecology Package [Software].Google Scholar
  30. Oyugi, J. O., Qiu, H., and Safronetz, D., 2007. Global warming and the emergence of ancient pathogens in Canada’s Arctic regions. Medical Hypotheses, 68 (3): 709.CrossRefGoogle Scholar
  31. Parsons, A. N., Barrett, J. E., Wall, D. H., and Virginia, R. A., 2004. Soil carbon dioxide flux in antarctic dry valley ecosystems. Ecosystems, 7 (3): 286–295.CrossRefGoogle Scholar
  32. Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L., 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484 (7395): 502–505.CrossRefGoogle Scholar
  33. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O., 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41 (Database issue): 590–596.CrossRefGoogle Scholar
  34. Santamans, A. C., Boluda, R., Picazo, A., Gil, C., Ramosmiras, J., Tejedo, P., Pertierra, L. R., Benayas, J., and Camacho, A., 2017. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants. PLoS One, 12 (8): e0181901.CrossRefGoogle Scholar
  35. Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G., and Witt, R., 2014. The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9 (8): 085003.CrossRefGoogle Scholar
  36. Schmidt, I. K., Jonasson, S., and Michelsen, A., 1999. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Applied Soil Ecology, 11 (2–3): 147–160.CrossRefGoogle Scholar
  37. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., and Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12 (6): R60.CrossRefGoogle Scholar
  38. Staddon, W. J., Duchesne, L. C., and Trevors, J. T., 1997. Microbial diversity and community structure of postdisturbance forest soils as determined by sole-carbon-source utilization patterns. Microbial Ecology, 34 (2): 125–130.CrossRefGoogle Scholar
  39. Staddon, W. J., Trevors, J. T., Duchesne, L. C., and Colombo, C. A., 1998. Soil microbial diversity and community structure across a climatic gradient in western Canada. Biodiversity & Conservation, 7 (8): 1081–1092.CrossRefGoogle Scholar
  40. Steig, E. J., Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., and Shindell, D. T., 2009. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature, 457 (7228): 459–462.CrossRefGoogle Scholar
  41. Tierney, L., 2012. The R Statistical Computing Environment. Springer, New York, 1–21.Google Scholar
  42. Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A., Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovkina, S., 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25 (3): 279–294.CrossRefGoogle Scholar
  43. Tytgat, B., Verleyen, E., Sweetlove, M., D’Hondt, S., Clercx, P., Ranst, E. V., Peeters, K., Roberts, S., Namsaraev, Z., and Wilmotte, A., 2016. Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiology Ecology, 92 (9): fiw126.CrossRefGoogle Scholar
  44. Van Horn, D. J., Okie, J. G., Buelow, H. N., Gooseff, M. N., Barrett, J. E., and Takacs-Vesbach, C. D., 2014. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Applied Environmental Microbiology, 80 (10): 3034–3043.CrossRefGoogle Scholar
  45. Wang, N. F., Zhang, T., Zhang, F., Wang, E. T., He, J. F., Ding, H., Zhang, B. T., Liu, J., Ran, X. B., and Zang, J. Y., 2015. Diversity and structure of soil bacterial communities in the fildes region (maritime Antarctica) as revealed by 454 pyrosequencing. Frontiers in Microbiology, 6: 1188.Google Scholar
  46. Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73 (16): 5261–5267.CrossRefGoogle Scholar
  47. You, Y., Wang, J., Huang, X., Tang, Z., Liu, S., and Sun, O. J., 2014. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecology & Evolution, 4 (5): 633–647.CrossRefGoogle Scholar
  48. Zhang, C., Zhang, X. Y., Zou, H. T., Kou, L., Yang, Y., Wen, X. F., Li, S. G., Wang, H. M., and Sun, X. M., 2017. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China. Biogeosciences, 14 (20): 4815–4827.CrossRefGoogle Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Wenbing Han
    • 1
  • Nengfei Wang
    • 2
    Email author
  • Yue Ma
    • 3
  • Jinjiang Lv
    • 1
  • Shuang Wang
    • 4
  • Botao Zhang
    • 1
  • Zhihui Jiang
    • 5
  • Huansheng Cao
    • 6
  1. 1.College of Chemistry and Chemical EngineeringQingdao UniversityQingdaoChina
  2. 2.Key Laboratory of Marine Bioactive Substances, First Institute of OceanographyState Oceanic AdministrationQingdaoChina
  3. 3.Department of Bioengineering, College of Marine Sciences and Biological EngineeringQingdao University of Science & TechnologyQingdaoChina
  4. 4.School of Basic MedicineQingdao UniversityQingdaoChina
  5. 5.Key Laboratory of Marine Science and Numerical ModelingState Oceanic AdministrationQingdaoChina
  6. 6.Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State UniversityTempeUSA

Personalised recommendations