Advertisement

Journal of Ocean University of China

, Volume 18, Issue 6, pp 1273–1281 | Cite as

Numerical Simulation of Mechanical Characteristics of a Metal Net for Deep-Sea Aquaculture

  • Changping Chen
  • Hangfei Liu
  • Yu HuangEmail author
  • Jie Yang
  • Xinyu Liang
  • Chaobi Zhang
  • Yafei Lou
  • Yu Zhang
Article
  • 18 Downloads

Abstract

The investigation on hydrodynamic characteristics of a cage is important for its application in the deep-sea aquaculture in our country. With finite element method, the beam element is used to simulate a three-dimensional metal chain net, and the connector element is introduced as the interaction between metal net lines. A mechanical model for the metal net is constructed to simulate the hydrodynamic characteristics of a metal net subjected to fluid current forces. The static simulation results show that the relative errors of the displacements are 2.13%, 4.19%, 6.64%, and 11.35% compared with static concentrated load tests under concentrated forces of 20, 40, 60, and 80 N, respectively. Both the transient hydrodynamic deformations and drag forces of the netting structures under different current velocities are obtained by solving the hydrodynamic equation of the netting structure. The average relative error of the current forces obtained by numerical simulations shows an 8.13% deviation from the drag tests of the metal nets in the tank under five current velocities. The effectiveness and precision of the simulation approach are verified by static and dynamic tests. The proposed simulation approach will provide a good foundation for the further investigation of the hydrodynamic characteristics of deep-sea aquaculture metal cages and the parameter design for the safety of such cage systems.

Key words

metal net finite element method connector element mechanical characteristics numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work is financially supported by the National Natural Science Foundation (No. 31572663).

Reference

  1. Bessonneau, J. S., and Marichal, D., 1998. Study of the dynamics of submerged supple nets (applications to trawls). Ocean Engineering, 25(7): 563–583, DOI:  https://doi.org/10.1016/S0029-8018(97)00035-8.CrossRefGoogle Scholar
  2. Cha, B. J., and Lee, G. H., 2018. Performance of a model fish cage with copper-alloy net in a circulating water channel and wave tank. Ocean Engineering, 151: 290–297, DOI:  https://doi.org/10.1016/j.oceaneng.2018.01.053.CrossRefGoogle Scholar
  3. Chen, C. P., Wang, W., Zheng, J. C., Shi, X. Y., and Liu, C. F., 2017. Numerical simulation on the hydrodynamic characteristic of the plane metal net under current. Journal of Dalian Ocean University, 32(3): 363–368 (in Chinese with English abstract).Google Scholar
  4. Choc, Y. I., and Casarella, M. J., 1971. Hydrodynamic resistance of towed cables. Journal of Hydronautics, 5(4): 126–131, DOI:  https://doi.org/10.2514/3.62882.CrossRefGoogle Scholar
  5. Decew, J., Osienski, M., Drach, A., Celikkol, B., and Tsukrov, I., 2013. Effect of the bending stiffness on the volumetric stability of fish cages with copper alloy netting. International Conference on Computational Methods in Marine Engineering. Hamburg, Germany, 1–7.Google Scholar
  6. Drach, A., Tsukrov, I., Decew, J., and Celikkol, B., 2016. Engineering procedures for design and analysis of submersible fish cages with copper netting for exposed marine environment. Aquacultural Engineering, 70: 1–14, DOI:  https://doi.org/10.1016/j.aquaeng.2015.11.001.CrossRefGoogle Scholar
  7. Fredheim, A., and Faltinsen, O. M., 2001. A numerical model for the fluid structure interaction of three-dimensional net structure. Proceeding of the 5th International Workshop ‘DEMaT 01’. University of Rostock, Germany, 2.Google Scholar
  8. Fredriksson, D. W., Swift, M. R., Irish, J. D., Tsukrov, I., and Celikkol, B., 2003. Fish cage and mooring system dynamics using physical and numerical models with field measurements. Aquacultural Engineering, 27: 117–146, DOI:  https://doi.org/10.1016/s0144-8609(02)00043-2.CrossRefGoogle Scholar
  9. Gosz, M., Kestler, K. J., and Swift, M. R., 1996. Finite element modeling of submerged aquaculture net pen system. In: Open Ocean Aquaculture. Maine Sea Grant College Program Rpt. New Hampshire, 523–554.Google Scholar
  10. Huang, X. H., Guo, G. X., Tao, Q. Y., Hu, Y., Liu, H. Y., and Wang, S. M., 2016. Numerical simulation of deformations and forces of a floating fish cage collar in waves. Aquacultural Engineering, 74: 111–119, DOI:  https://doi.org/10.1016/j.aquaeng.2016.07.003.CrossRefGoogle Scholar
  11. Lader, P. F., and Enerhaug, B., 2005. Experimental investigation of forces and geometry of a net cage in uniform flow. IEEE Journal of Oceanic Engineering. 30(1): 79–84, DOI:  https://doi.org/10.1109/joe.2004.841390.CrossRefGoogle Scholar
  12. Lader, R. F., Fredheim, A., and Lien, E., 2001. Dynamic behavior of 3D nets exposed to waves and current. Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering. Rio de Janeiro, OMAE, 1125.Google Scholar
  13. Lee, C. W., Lee, J. H., Cha, B. J., Kim, H. Y., and Lee, J. H., 2005. Physical modeling for underwater flexible systems dynamic simulation. Ocean Engineering, 32(3): 331–347, DOI:  https://doi.org/10.1016/j.oceaneng.2004.08.007.CrossRefGoogle Scholar
  14. Lee, C. W., Lee, J., and Park, S., 2015. Dynamic behavior and deformation analysis of the fish cage system using mass-spring model. China Ocean Engineering, 29(3): 311–324, DOI:  https://doi.org/10.1007/s13344-015-0022-2.CrossRefGoogle Scholar
  15. Li, L., Fu, S., and Li, R., 2012. Dynamic responses of the floating cage system in current and waves. International Conference on Ocean, Offshore and Arctic Engineering. ASME, 239–248, DOI:  https://doi.org/10.1115/OMAE2012-83284.
  16. Li, L., Fu, S., and Xu, Y., 2013. Nonlinear hydroelastic analysis of an aquaculture fish cage in irregular waves. Marine Structures, 34: 56–73, DOI:  https://doi.org/10.1016/j.marstruc.2013.08.002.CrossRefGoogle Scholar
  17. Li, L., Fu, S., Xu, Y., Wang, J., and Yang, J., 2013. Dynamic responses of floating fish cage in waves and current. Ocean Engineering, 72: 297–303, DOI:  https://doi.org/10.1016/j.oceaneng.2013.07.004.CrossRefGoogle Scholar
  18. Li, Y. C., Gui, F. K., Zhang, H. H., and Guan, C. S., 2005. Simulation criteria of fishing nets in aquiculture sea cage experiments. Journal of Fish Sciences of China, 12(2): 179–187 (in Chinese with English abstract).Google Scholar
  19. Li, Y. C., Zhao, Y. P., Gui, F. K., and Teng, B., 2006. Numerical simulation of the hydrodynamic behavior of submerged plane nets in current. Ocean Engineering, 33(17-18): 2352–2368, DOI:  https://doi.org/10.1016/j.oceaneng.2005.11.013.CrossRefGoogle Scholar
  20. Liu, H., Wang, S., Huang, X., Tao, Q., Hu, Y., Guo, G., and Song, L., 2017. Mechanical property analysis and optimization of deep-water net cage guardrail. Transactions of the Chinese Society of Agricultural Engineering, 33(4): 248–257, DOI:  https://doi.org/10.11975/j.issn.1002-6819.2017.04.034 (in Chinese with English abstract).Google Scholar
  21. Marichal, D., 2003. Cod-end numerical study. Proceedings of Hydroelasticity in Marine Technology. Oxford, 11–18.Google Scholar
  22. Nie, Z. W., Wang, L., Liu, Y. L., Shi, J. G., Min, M. H., Yu, W. W., Chen, X. W., and Wang, L. M., 2016. Development and application of fishery copper alloy netting. Marine Fisheries, 38(3): 329–336 (in Chinese with English abstract).Google Scholar
  23. Su, W., and Zhan, J. M., 2007. Computational method for deformation of volume of net structure in current. The Ocean Engineering, 25(1): 93–100 (in Chinese with English abstract).Google Scholar
  24. Suzuki, K., Takagi, T., Shimizu, T., Hiraishi, T., Yamamoto, K., and Nashimoto, K., 2003. Validity and visualization of a numerical model used to determine dynamic configurations of fishing nets. Fisheries Science, 69(4): 695–705, DOI:  https://doi.org/10.1046/j.1444-2906.2003.00676.x.CrossRefGoogle Scholar
  25. Swift, M. R., Drach, A., Celikkol, B., Tsukrov, I., and DeCew, J., 2011. Chracterization of geometry and normal drag coefficients of copper nets. Ocean Engineering, 38(17): 1979–1988, DOI:  https://doi.org/10.1016/j.oceaneng.2011.09.019.Google Scholar
  26. Tsukrov, I., Eroshkin, O., Fredriksson, D., Swift, M. R., and Celikkol, B., 2003. Finite element modeling of net panels using a consistent net element. Ocean Engineering, 30(2): 251–270, DOI:  https://doi.org/10.1016/S0029-8018(02)00021-5.CrossRefGoogle Scholar
  27. Zhao, Y. P., Li, Y. C., Dong, G. H., Gui, F. K., and Teng, B., 2007. Numerical simulation of the effects of structures ratio and mesh style on the 3D net deformation of gravity cage in current. Aquacultural Engineering, 36(3): 285–301, DOI:  https://doi.org/10.1016/j.aquaeng.2007.01.003.CrossRefGoogle Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  • Changping Chen
    • 1
    • 2
  • Hangfei Liu
    • 3
  • Yu Huang
    • 1
    • 2
    Email author
  • Jie Yang
    • 1
    • 2
  • Xinyu Liang
    • 1
    • 2
  • Chaobi Zhang
    • 1
    • 2
  • Yafei Lou
    • 1
    • 2
  • Yu Zhang
    • 1
    • 2
  1. 1.Liaoning Provincial Key Laboratory of Coastal EngineeringDalian Ocean UniversityDalianChina
  2. 2.Key Laboratory of Environment Controlled AquacultureMinistry of EducationDalianChina
  3. 3.State Key Laboratory of Coastal and Offshore EngineeringDalian University of TechnologyDalianChina

Personalised recommendations