Journal of Ocean University of China

, Volume 18, Issue 6, pp 1507–1514 | Cite as

A New Molecular Label Applied to the Study of the Yellow Sea Green Tide

  • Weijie Shen
  • Yuan He
  • Songdong ShenEmail author


From 2007 to 2017, large-scale green tides occurred every year in the Yellow Sea of China, and Ulva prolifera was the main species leading to the green tide. In this study, we used the Polymerase chain reaction and 3′ Rapid-amplification of cDNA ends technique to amplify the nrDNA-LSU and IGS sequences in U. prolifera and one species of Blidingia. These techniques showed 3259 bp of nrDNA-LSU and 3388 bp of IGS in U. prolifera and 3282 bp nrDNA-LSU and 3059 bp IGS in Blidingia sp. At the same time, tandem repeats, short dyads, palindromic and multiple simple repeat sequences in the IGS sequence were found by analyzing the structure of the IGS sequence in U. prolifera and Blidingia sp. G + C contents of the IGS sequence in U. prolifera and Blidingia sp. were 52.42% and 53.09%, respectively. We divided the U. prolifera into two types according to the morphological characteristics. Although the specimens of U. prolifera from the Qingdao coastal area, Jiangsu coastal area and the Yellow Sea have different morphologies, their ITS and IGS sequences are almost identical. Therefore, the main species of the green tides in the Qingdao coastal area, Jiangsu coastal area and the Yellow Sea are the same and have the same origin.

Key words

LSU IGS Ulva prolifera green tide morphological characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Program of China (Nos. 2016YFC1402102 and 2016YFC 1402104) and the National Natural Science Foundation of China (No. 41276134). Thank Captain Lin Wei in the collection of experimental samples.


  1. Benson, G., 1999. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 27: 573–580.CrossRefGoogle Scholar
  2. Bertoldo, C., Gilardi, G., Spadaro, D., Garibaldi, A., and Gullino, M. L., 2011. Assessment of genetic variability of some strains of Fusarium spp. isolated from Lisianthus by analysis of TEF sequences, IGS and RAPD. Protezione Delle Colture, 2–13.Google Scholar
  3. Bhatia, S., Singh, N. M., and Lakshmikumaran, M., 1996. Structural analysis of the rDNA intergenic spacer of Brassica nigra: Evolutionary divergence of the spacers of the three diploid brassica species. Journal of Molecular Evolution, 43: 460.CrossRefGoogle Scholar
  4. Blomster, J., Maggs, C. A., and Stanhope, M. J., 1997. Molecular and morphological analysis of E. intestinalis and E. compressa (Chlorophyta) in the British isles. Journal of Phycology, 36: 9.Google Scholar
  5. Burton, R. S., Metz, E. C., Flowers, J. M., and Willett, C. S., 2005. Unusual structure of ribosomal DNA in the copepod Tigriopus californicus: Intergenic spacer sequences lack internal subrepeats. Gene, 344: 105–113.CrossRefGoogle Scholar
  6. Cai, C., Wang, L., Zhou, L., He, P., and Jiao, B., 2017. Complete chloroplast genome of green tide algae Ulva flexuosa (Ulvophyceae, Chlorophyta) with comparative analysis. PLoS One, 12: e0184196.CrossRefGoogle Scholar
  7. Dai, X. J., Ou, L. J., Li, W. J., Liang, M. Z., and Chen, L. B., 2008. Analysis of rDNA intergenic spacer (IGS) sequences in Oryza sativa L. and their phylogenetic implications. Acta Agronomica Sinica, 34: 1569–1573 (in Chinese with English abstract).CrossRefGoogle Scholar
  8. Gao, G., Zhong, Z., Zhou, X., and Xu, J., 2016. Changes in morphological plasticity of Ulva prolifera, under different environmental conditions: A laboratory experiment. Harmful Algae, 59: 51–58.CrossRefGoogle Scholar
  9. Higgins, D., Thompson, J., and Gibson, T., 1994. Clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix. Nucleic Acids Research, 22: 4673–4680.CrossRefGoogle Scholar
  10. Hoham, R. W., Bonome, T. A., Martin, C. W., and Leebens-Mack, J. H., 2002. A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. Journal of Applied Phycology, 38: 1051–1064.CrossRefGoogle Scholar
  11. Keesing, J. K., Liu, D., Fearns, P., and Garcia, R., 2011. Inter- and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Marine Pollution Bulletin, 62: 1169–1182.CrossRefGoogle Scholar
  12. Li, X. C., Xu, J. J., He, Y. S., Shen, D., Zhu, J. Y., and Shen, Z. G., 2016. The complete nuclear ribosomal DNA (nrDNA) cistron sequence of Pyropia yezoensis (Bangiales, Rhodophyta). Journal of Applied Phycology, 28: 1–7.CrossRefGoogle Scholar
  13. Li, Y. Y., Shen, S. D., He, L. H., Xu, P., and Lu, S., 2010. Sequence analysis of rDNA intergenic spacer (IGS) of Pyropia haitanensis. Journal of Applied Phycology, 22: 187–193.CrossRefGoogle Scholar
  14. Lin, Z., Shen, S., Chen, W., and Li, H., 2013. Phylogenetic analyses of four species of Ulva, and Monostroma grevillei, using ITS, rbcL and 18S rDNA sequence data. Chinese Journal of Oceanology and Limnology, 31: 97–105.CrossRefGoogle Scholar
  15. Liu, C. L., Wang, X. L., Liu, S. H., Cong, B. L., Huang, X. H., Wang, Z. L., Lin, X. Z., and Zang, J. Y., 2011. ISSR biomolecular marker analysis for original source of Enteromorpha during green tide in Yellow Sea in 2008. Advanced Marine Science, 29: 235–240 (in Chinese with English abstract).Google Scholar
  16. Liu, D., Keesing, J. K., Xing, Q., and Shi, P., 2009. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Marine Pollution Bulletin, 58: 888–895.CrossRefGoogle Scholar
  17. Liu, D. Y., Keesing, J, K., Dong, Z. J., Yu, Z., Di, B. P., Shi, Y. J., Fearns, P., and Shi, P., 2010. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Marine Pollution Bulletin, 60: 1423–1432.CrossRefGoogle Scholar
  18. Liu, F., and Bi, Y., 2017. Mitochondrial genomes of the green macroalga Ulva pertusa (Ulvophyceae, Chlorophyta): Novel insights into the evolution of mitogenomes in the Ulvophyceae. Journal of Phycology, 53: 1010–1019.CrossRefGoogle Scholar
  19. Luo, M. B., and Liu, F., 2012. Sequence analysis of ITS regions of Ulva prolifera in green tides in Yellow Sea of China in 2009 and 2010. Marine Environmental Science, 31: 653–656.Google Scholar
  20. Matsuo, Y., Imagawa, H., Nishizawa, M., and Shizuri, Y., 2005. Isolation of an algal morphogenesis inducer from a marine bacterium. Science, 307: 1598.CrossRefGoogle Scholar
  21. Onkendi, E. M., and Moleleki, L. N., 2013. Detection of Meloidogyne enterolobii in potatoes in South Africa and phylogenetic analysis based on intergenic region and the mitochondrial DNA sequences. European Journal of Plant Pathology, 136: 1–5.CrossRefGoogle Scholar
  22. Pang, S. J., Liu, F., Shan, T. F., Xu, N., Zhang, Z. H., Gao, S. Q., Chopin, T., and Sun, S., 2010. Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Marine Environmental Research, 69: 207–215.CrossRefGoogle Scholar
  23. Raffaelli, D. G., Raven, J. A., and Poole, L. J., 1998. Ecological impact of green macroalgal blooms. Oceanography & Marine Biology, 125: 37–97.Google Scholar
  24. Riethmueller, A., Weiss, M., and Oberwinkler, F., 1999. Phylogenetic studies of Saprolegniomycetidae and related groups based on nuclear large subunit DNA sequences. Canadian Journal of Botany, 77: 1790–1800.CrossRefGoogle Scholar
  25. Valiela, I., Mcclelland, J., Hauxwell, J., Behr, P. J., Hersh, D., and Foreman, K., 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography, 42: 1105–1118.CrossRefGoogle Scholar
  26. Wang, L., Cai, C., Zhou, L., He, P., and Jiao, B., 2017. The complete chloroplast genome sequence of Ulva linza. Conservation Genetics Resources, 9: 1–4.CrossRefGoogle Scholar
  27. White, T. J., Bruns, T. D., Lee, S. B., and Taylor, J. W., 1990. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. Innes, M. A., et al., eds., Academic Press, New York, 315–322.Google Scholar
  28. Wichard, T., 2015. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Frontiers in Plant Science, 6: 86.Google Scholar

Copyright information

© Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.Department of Cell Biology, College of Biology and Basic Medical SciencesSoochow UniversitySuzhouChina

Personalised recommendations